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Prologue

The main objective of this symposium is to allow interested
parties to better discover current advances in fields related to
Artificial  Intelligence and the  Security of new
Telecommunications Systems. It will offer specialists the
opportunity to establish privileged contacts in the scientific
community, in particular with other laboratories and research
teams.

In addition, this international symposium will allow French-
speaking researchers to discuss their work and initiatives; and
will be able to give doctoral students the opportunity to gain a
broad overview of their field of research and to benefit from a
first contact that is both rigorous and benevolent with all the
related activities. Finally, it will also be an opportunity to share
on the perspectives and projects in progress.
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The IoS, Taking IoT Further With A.L. Via Small Satellites
Mohamed KAYYALI
University of California UCSB
Image Processing laboratory, USA

mullderjob2 @gmail.com

Abstract:
[t is not about artificial intelligent and decision-making support on Earth and all

activities on ground but also it's about artificial intelligence and support your
decision from space through small satellites, this is what we called internet of
satellites the next revolution of Internet of things IOT in space. Satellites that are
orbiting in the lower orbits such as nano satellites and microsatellites the future
will be relaying on trajectory decision maneuvering decision telecommunication
and transmission and detecting objects and many things with a real time

decision from space.

Future industry and semiconductors oriented to Internet of things to relay on
internet of satellites for a wider coverage and precision data that can be
gathered from space while processing the real data from space and taking a
decision is one of the most oriented topic targeting future industry such as
navigation systems aviation transportation logistics Marine industry tracking

systems motion detection and much more.
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The mathematical concept behind deep learning

Belaid Bouikhalene
LIMATI Laboratoty, Sultan Moulay
Slimane University, Beni Mellal, Morocco.
b.bouikhalene@usms.ma

Abstract :
Several mathematical branches such as analysis, linear algebra, differential

calculus, optimization and probability and statistics are behind deep
learning. Indeed, modeling and learning based on these notions, from the
development of the artificial neuron in 1943 to the implementation of deep

learning algorithms in 2012.

From Single-Sensor Signal Processing To Multi-Sensor Signal Processing

Miloud Frikel

LIS Laboratory, ENSICAEN School,
Caen University, Caen France
miloud.frikel@ensicaen.fr

Résumé:

Depuis l'avénement des sciences, la plupart des chercheurs font ont fait du
traitement du signal sans étre des "traiteurs de signaux". En effet, faire de
I'acquisition des données, les mettre en forme, les transformer permet
d’extraire une information utile, c'est du traitement du signal. Si on rajoute la
modélisation et des algorithmes rapides de calcul, on a cette discipline a part

entiere bien établie depuis les années 1960.

Le traitement du signal est au cceur des trois disciplines : La physique, les
mathématiques et l'informatique. En effet, un signal est un support physique

d'une information. Ces informations sont dans la nature ou issues de

-13-
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réalisations technologiques. Les mathématiques ont pour réle de modéliser ces
signaux pour mieux les traiter et l'informatique permet un traitement rapide

grace a des algorithmes efficaces.

La discipline du traitement du signal a été reconnue comme telle depuis
I'apparition d'ordinateurs et de micro-processeurs qui ont permis des
traitements en temps-réel des différents signaux. L'exemple le plus parlant est le

calcul de la transformée de Fourier grace a des algorithmes rapides de la FFT.

Les différentes méthodes de traitement du signal sont, maintenant, miires et
bien reconnues. Cependant, avec la révolution numérique actuelle, il y a une
quantité de données de plus en plus grandes a analyser et a traiter. En général,
le traitement du signal consiste a un traitement mono-entrée/mono-sortie et
par extension au traitement du signal multidimensionnel avec plusieurs entrées
et sorties, les méthodes classiques ont montré certaines limites et nécessitent le
développement de nouvelles techniques se basant sur l'optimisation par

exemple ou de I'intelligence artificielle.

Cybersecurity challenges and issues in modern applications
Yassine Sadqi
LIMATI Laboratoty, Sultan Moulay Slimane University,
Beni Mellal, Morocco
yassine.sadgi@gmail.com

Abstract:

Currently, modern applications such as web-based apps, cloud-hosted apps, and
mobile apps are without any doubt the most used means of communication and
information exchange. Applications such as online banking, e-commerce, online
blogs and social networking apps have become a common platform for the
transmission of information and the provision of services online. However, the
open nature of modern applications and their wide usage in delivering critical
services made them a prime target of cyber-attacks. Moreover, the rapid
evolution and advance in software technologies have made the structure and
interaction between the client-side and server-side components of modern apps

more and more complexes, which have led to several security issues. Hence, it
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has become necessary to understand the core challenges and security issues of

modern applications.

Storage Of Renewable Energies, Role Of Hydrogen

Youssef NAIMI
Laboratory of Physical Chemistry of Materials, FSBM, Hassan
II University of Casablanca:
youssefnaimi@outlook.com

Abstract:

Today, more than ever, humanity is confronted with the problems of pollution,
energy management, and environmental protection linked to unbearable
economic and industrial developments. Since 1945, revolutionary advances in
the biological sciences had, have, and will continue to have a profound impact on
the quality of life and development and several avenues have arisen to find
alternative solutions. In addition, at the summit of world leaders, the notion of
sustainable development, based on economic, social, and environmental
development was adopted. The first definition of sustainable development (a
development that meets the needs of the present without compromising the
ability of future generations to meet theirs) was established in 1987. The United
Nations Conference on Environment and Development, which was held in 1992
in Rio de Janeiro, Brazil (known as the &quot;Earth Summit&quot;), highlighted
the critical role that renewable energy sources and technologies can play in
helping to meet the double challenge of development and environmental
protection. The United Nations General Assembly has adopted several
resolutions endorsing the World Solar Program 1996-2005 as a contribution to
the achievement of development goals. Within this framework, the World
Summit on Sustainable Development (Johannesburg, South Africa, August 2002)
set up a process aimed at promoting the use of sustainable and renewable
energy sources to improve the living conditions of those who do not have access

to conventional energy sources.

Today, the world community is aware of the role and importance of these
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energies, particularly for sustainable development and the improvement of the
living conditions of poor rural populations. However, renewable energies are
intermittent; hence the need to find solutions for their storage, since their
capture (production) is always delayed in time compared to their consumption
(need). Energy savings and the rational use of energy (energy efficiency) are
essential, particularly in the building sector (thermal insulation, solar water
heaters, use of heat pumps, etc.). The greatest energy savings are possible in the
transportation sector, as electric and fuel cell vehicles are much more efficient
than current internal combustion engine vehicles. Oil is a major source of
pollution that must be replaced or accompanied by other sources, respecting the
environment. Of the many candidates, hydrogen appears to be the most
promising. Hydrogen would have an important role in such an energy system,
serving as a transport fuel, energy storage, and feedstock by producing methane.
Methane is considered an energy carrier that could be used in existing natural
gas infrastructure. Finally, in the more or less near future, hydrogen could also
be used directly in all applications replacing natural gas and methane. In this
work, we present the recent development of technologies renewable energies,

energy storage, and the integration of the hydrogen chain.
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Abstract — In this paper we are focused on time series evo-
lution describing the daily evolution of pandemic contamina-
tion detected in some countries in Europe, North America
and Africa. Our goal is to elaborate a model which able to
represent the pandemic data in each country. Some models
have been developed based SIDARTHE dynamics model with
more parameters. Other method is based on the Susceptible-
Exposed-Infectious-Removed (SEIR) model to derive the epi-
demic curve. Another paper has presented an agent-based
model for affine-grained computational simulation of the ongo-
ing COVID-19 pandemic. In this paper we attempt to build our
model able to represent the evolution of this epidemic in some
countries in Europe in which the evolution is more critical in
North America. Those models will give us an idea about the
possibility to develop a universal model describing the evolu-
tion of the contamination caused by COVID-19. The developed
models are used to simulate and predict the contamination in
each country based on Higher Order Statistics and time series
analysis technics.

Keywords — Pandemic contamination, COVID-19, Modelling,
Time series analysis, Higher Order Statistics (HOS)

1. Introduction

The coronavirus COVID-19 pandemic is the defining global
health crisis of our time and the greatest challenge we have
faced since world war two. Since its emergence in Asia late
last year, the virus has spread to every continent [1-6]. Cases
are rising daily in Africa the Americas, and Europe. Coun-
tries are racing to slow the spread of the virus by testing
and treating patients, carrying out contact tracing, limiting
travel, quarantining citizens, and cancelling large gatherings
such as sporting events, concerts, and schools. The pan-
demic is moving like a fire one that may yet destroy the
countries least able to cope or take some erratic decisions
like confinement and separation [7-13].

This paper deals with time domain statistical models [14-20]
by analyzing time series representing the number of person
infected by COVID-19 evolution of the pandemic in a given
country [13]. In order to do this study we analyses the data
at: stationary and nonstationary models, no seasonal and
seasonal models, intervention and outlier models, transfer
function models, regression time series models [21-28]. We
discuss the process of time series analysis [14,17] includ-
ing model identification, parameter estimation, diagnostic

checks, forecasting. We also discuss how we can represent
this pandemic by a generalized model representing this con-
tamination regardless of the country from which the data is
collected. The rest ofm this paper is organized as follow: in
section 2 we represent the data base representing the pan-
demic in six countries collected between February and May.

2. Data analysis

2.1. Data evolution

The data representing the daily number of person contami-
nated by COVID-19 pandemic are collected from the web-
site: https://www.coronavirus-statistiques.com/, in which
they represent the daily cumulative infected person in dif-
ferent countries in the world.

In the Figure 1 the daily infected person, respectively, in
(France, Germany, Italy, United Kingdom, United State of
America and Morocco). Note that we will consider the data
collected between February to May 2020.

The first step in the analysis of a time series representing
the collected data is the selection of a suitable mathemati-
cal model (or class of models) for the data. For this we plot
the data, if there are an apparent discontinuities in the series
such as a sudden change of level which may be advisable,
to analyse the series by first breaking it into homogeneous
segments. Inspection of the graphs represented in the Figure
1 describing the number of person infected by COVID-19 in
countries (France, Germany, Italy, United-Kingdom, United
States of America and Morocco) suggests the possibility of
representing the collected data x(¢) as a realisation of a pro-
cess with two components:

x(t) = s(t) +r(t) (1)

where s(t) is a slowly changing function known as a "trend
component” and r(¢) is a “random noise component” which
is stationary.

The second step in the data analysis is to calculate the au-
tocorrelation function ACF (¢) and the 2-D diagonal slice of
the fourth order cumulantC(z,7,7). If the (ACF) and 2-D
diagonal slice of the fourth order cumulant (C(t,7,t)) repre-
sent the low decrease, we can conclude that the time series
is non-stationary.
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Fig. 1. Collected data, between February and May, representing
the COVID-19 pandemic in five countries: (a): France, (b): Ger-
many, (c) Italy, (d) United State of America, (¢) Morocco and (f)
United Kingdom.

2.2. French data analysis

In the Figure 2, we represent the autocorrelation function
ACF (1) (a) and the 2-D diagonal slice of the fourth order
cumulants (C(z,t,t) (b) of the time series xr(¢) representing
the data collected in France. As we can see on the two curves

0 3 £ 5 0 " E]
Lazt Lt

E] ]
Fig. 2. The autocorrelation function (a) and the fourth cumulant
diagonal slice (b) of the time series xr (¢)

plotted in Figure 2, the slow decrease confirms that the data
represented by the time series xg(¢) is non stationary [14,
17]. Therefore, it is necessary to perform a transformation
on xp(t) to have a stationary process. The elimination of
the trend component (to obtain a stationary process) can be
performed using the differentiation operator V repeatedly to

the times series xp (¢) as follows:

Vi (1) (1-B)xp(r)

= yr(t) 2

Where B is the backward shift operator and d is the order of
differentiation.
The transformed times series yr () is plotted in Figure 3. In
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Fig. 3. The transformed time series yr(¢)

the Figure 4, we represent the ACF (¢) and the cumulant di-
agonal slice C(z,7,t) of the transformed time series yr (), in
the case of d = 1.

As we can see in the Figure 4, both of the curves of the

—— ACF(1)

—
Confidence interval [|

08 N R a5

ACF(t) and C{tLY

Fig. 4. The autocorrelation function (a) and the fourth cumulant
diagonal slice (b) of the transformed time series xp (¢)

Autocorrelation function (ACF(r)) and the cumulant diag-
onal slice of fourth order (C(¢,t,t)) decreases rapidly this
confirms that the transformed time series yr(¢) is stationary.

2.2..1 The identification problem

Let us consider the transformed times series yr(¢), described
in equation (eq. 2). The problem now is to find satisfactory
ARMA(p,q) (because the transformed time series is station-
ary) model to represent the time series yp(¢). If p and ¢
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were known in advance this would be a straightforward ap-
plication of the estimation techniques. However this is not
usually the case, so it is necessary to identify appropriate
values for p and g. It’s clear from the curve of Figure 4 that
the values of the ACF () and C(¢,¢,t) after lag 2 are into con-
fidence interval at 95% (given by +1.96/1/(N), where N is
the data length ) consequently the times series yr(¢), rep-
resenting the transformed data, can be described by a MA
model of order 1 or 2.

In the order to estimate the parameters of the ”a priori” se-
lected models (MA(1) or MA(2) ) which could represent the
time series, we use the algorithm [21], described in the fol-
lowing section.

3. Algorithm based on third order
cumulant

The time series yp(k) is considered like an output of a
FIR(q) channel (or MA(q) model), excited by an unobserv-
able input sequences, i.i.d zero-mean symbols with unit en-
ergy, across a channel with memory g The output time series
is described by the following equation

ve (k) =} h(i)e(k—1) (3)

where hy = (h(0),h(1),h(2),...,h(q)) represents the chan-
nel impulse response, e(k) with variance c2.

The completely blind channel identification problem is to
estimate /1, based only on the measured data yr (k) and with-
out any knowledge of the energy of the input data, e(k).

Let us suppose that: the input e(k) is no-Gaussian, with
variance 67, identically independent distributed (i.i.d) with
the m'" order cumulant vanishes for m > 2. In addition we
suppose that channel order ¢ is supposed to be known and
h(0)=1.

Then the m'™" order cumulant of the output signal is given by
the following equation [18]

’}/me Z h l+tl

[=—o0

Cmyp(tl,...,l‘m 1 h(i—}—tm,]) 4)

with 7, represent the m" order cumulant of the excita-
tion signal {e(k)} at origin.
If m = 3 the equation (4) yield to

C3)F tl7t2

%eZh (i+0)h(i+1) (5)

the same, if m = 2 the equation (4) becomes

q
Cay, (1) = 0* Y h(i)h(i+1) (6)
i=0
the Fourier transformation of the equations (5) and (6)
gives us the spectre and bispectra respectively

S3ye (@1, @2) = Y3eH (01)H () H (-1 — @) (7)

Sayr (0) = °H(0)H(~0) ®)

if we suppose that @ = (@ + @) , the equation (8) be-
comes

Sayp (@1 + ) = 6°H(w) + a)H(—w1 — ) (9)

then, from the equations (7) and (9) we obtain the fol-
lowing equation

H(o1 + 02)S3y, (01 + @) = eH(01)H(@2)Sy, (01 + @)
(10)
with € = (%) The inverse Fourier transformation of

the equation (8) demonstrates that the 3" order cumulant,
the Auto-Correlation Function (ACF) and the impulse re-
sponse channel parameters are combined by the following
equation

q

2 1()Cay (1

q
—ip—i)=¢€Y h(i)h(i+t—1n
i=0 i=0

)CZYF (t1 —i)

(1D

if we use the property of the ACF of the stationary pro-

cess, such as Cyy,. () # 0 only for (—g < < g) and vanish

elsewhere. In addition if we take #; = —g, the equation (11)
takes the form

3 h(0)Cayy (—g— itz — i) = eh(O)h{t2 +4)Coy (—
i=0

q) (12)

else if we suppose that r, = —¢, the equation (11) be-
comes

Cayp (—q,—q) = €h(0)Coyp (—q) (13)

using the equation (12) and (13) we obtain the following
relation

q

Y h(i)Cayp (—q—ista—i) =

i=0

h(t2 +q) (14)

else if we suppose that the system is causal, i.e. that
h(i) =0if i <0. So, for t, = —q,...,0, the system of equa-
tions (12) can be written in matrix form as

Cayr(—29,-2q)

Cyp(—g—1,—q—1)
C3)7F( q_lv_Q)_a C3y1-‘(_2q,_2q+l)
C3)’F(7q 1,1) C3yF(*2617*Q)*05
h(1) 0
h(2) ~Cayp(—g,—q+1)
X ) = ) (15)
h(q) —Cy,(—4,0)

where a = Csy. (—¢,—q)
the above equation (15) can be written in compact form as
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Mhy=d (16)

with M the matrix of size (g + 1) x (q) element, &, a
column vector constitute by the unknown impulse response
parameters hy(n) :n=1,...,q and d is a column vector of
size (¢ + 1) x (1) as indicated in the equation (15). The
Least Squares solution (LS) of the system of equation (16),
permit an identification of the parameters /,(n) blindly and
without any ‘information’ of the input selective channel. So,
the solution will be written under the following form

hy=M"M)"'M"d (17)

B using the presented algorithm, described above (17), we
have estimated the parameters of the selected model MA(1)
and MA(2) able to represent the transformed time series
yr(t), this result are showed in Table 1.

Table 1
Estimation of the model parameters MA(1) and MA(2)

Parameters of models | h(1) n(2) o2

MA(1) —0.453 1.012
MA(2) —0.423 | 0.216 | 1.296
B Model selection

After a time series model has been specified and its param-
eters have been estimated, a check must be made to test
whether or not the original specification was correct. This
process of selection usually involves two steps:

1) the autocorrelation function and diagonal cumulant slice
of fourth order for the simulated series yp(z) are com-
pared with those of the original, yr (), series). If the two-
autocorrelation functions (i.e C(¢,¢,t) ) seems very different
then the validity of the model is doubtful. If the two ACFs
(i.e the C(z,z,t) ) are not markedly different, then we go to
the, second, following step,

2) we make a quantitative analysis of the measured and sim-
ulated data by the model.

In the following Figures (5) we have plotted the ACF (¢) and
C(t,t,t) calculated from simulated data using the MA(1) and
MA(2). The model can be finally accepted if the errors be-
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Fig. 5. (a): The ACF(¢) and C(t,t,t) of measured data, (b): sim-
ulated and measured data, (c) ACF (¢) of simulated yF () using the
model MA(1) and MA(2) and (d) C(z,t,t) of simulated yF (¢) using
the model MA(1) and MA(2)

tween the measured and simulated data are not very differ-
ent. From the curve of Figure 5, we remark that: the sim-
ulated and measured data have the same behaviour. So, the
model MA(1) is statistically accepted for representing the
time series. Finally, in order to generate the original data we
proceed as follows:

1) Generate a purely random variable e(¢) (white non-
Gaussian noise with variance 6> = 1.012 ), with no corre-
lated samples and with zero mean;

2) The process e(t) was filtered trough the MA(1) to obtain

the output yr (7).

3) The trend component was estimated by the interpo-
lation method in which we have selected a polynomial
pp(t) = (141‘4 + a3t3 —|—a2t2 + ait + ag (where aq4 = 0.003
a3 = —0.439,ay = 22.183, a; = —275.991, ap = 699.294
with 4th degree presented in the Figure 6;

4) We generate finally the simulated data x7 (1) = p(r) +

yr(t) (see Figure 7).
In conclusion we can see that the simulated data have the

8000

T T T T T
#  Collected data L

7000 | Fitted Polynomial with 4th degree

[S10] 0] SRTPEIIN

5000 -

4000 -

3000

number of person

2000 -

1000 |-

L i
0 10 20 30 40 50 60 70 80 90
Time in day

Fig. 6. Fitted polynomial with 4th degree representing the trend
component in the time series xp (¢).

8000 : : . : T

T T T
simulated data
— measured data

6000 -

4000

D000 frsersrnneimmmnises L || o ) |5 4

-2000

Il 1 I i Il
0 10 20 30 40 50 60 70 80 a0
Time in day

4000 i i i

Fig. 7. Simulated and collected data representing the COVID-19
in France.

approximately the same behaviour like the collected data
representing the time series of COVID-19 in France between
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February and May. The quantitative analysis was made by
calculating the relative error between the measured values
and the estimated values by the following formula:

_ max(yrp(t) —xp(1))
errorp = max(xr () (18)

The values of this error is 0.37, this error is acceptable be-
cause we have a small data number. If the collected data
is more importent this error well be more small, because in
this case the estimation problem will be taken with mini-
mum bias.

3.1. Germany data analysis

In this part we will consider the data, representing the num-
ber of person contaminated by COVID-19 pandemic, col-
lected in Germany. In Figure 1 (b) we have presented the
data representing the number of person contaminated by
COVID-19 in Germany between February and May 2020.
By proceeding, in the same manner, in the following we de-
scribe the model able to generate the time series xg(z) repre-
senting the person contaminated by COVID-19 in Germany.
B model selection
Like the French data, we apply the differentiation operator
to the time series xg () as follow

Vixg(t) = (1—B)xg(1)
Y6 (1) 19)

By taking d = 1 we obtain a stationary process yg(t). After
plotting the ACF(¢) and C(t,t,t) we observe that the pro-
cess yg(f) can be modelled by MA model of order 1 or
2. So, based on the algorithm described above (equation
17) we represent the estimated the parameters in Table 2.
In Figure 8 we have summarized the obtained results us-

Table 2
Estimation of the model parameters MA(1) and MA(2)
selected to represent the data yg(r)

Parameters of models | /(1) h(2) o2
MA(D) 0313 1.050
MA(Q2) 1.4852 | —0.8872 | 3.573

ing the two selected ’a priori’ models, in which we have
plotted the different ACF' () and C(¢,¢,t) of simulated data
using the models MA(1) and MA(2) and transformed data
yg(f). By analysing the results represented in Figure 8,
we remark that the model MA(1) is more suitable to rep-
resent the data y(¢), so by adding the trend component us-
ing a polynomial with fourth degree Pg(t) = ast* + ast® +
art* +ait +ag (where as = 0.004 a3 = —0.557,a, = 25.609,
a; = —248.341, ag = 380.423. As see in the Figure 8 (b)
that the simulated data have approximately the same be-
haviour like the collected data representing the time series
representing the COVID-19 pandemic in Germany between
February and May. In order to validate the obtained results,
we have calculated the relative error between the measured
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Fig. 8. (a):The ACF(¢) and C(t,t,t) of measured data, (b): simu-
lated and measured data, (c) ACF(r) of simulated yg(r) using the
model MA(1) and MA(2) and (d) C(t,t,t) of simulated yg(¢) using
the model MA(1) and MA(2)

values and the estimated values by the formula describing
in equation 18 which is 0.31, this value is inferior to those
obtained in the case of French data.

3.2. United Kingdom data analysis

In this section we will consider the data collected in United
Kingdom representing the person infected by COVID-19 be-
tween February and May, 2020 (see Figure 1). The first
step is to calculate the ACF(t) and C(t,t,t), of the time series
xyk (t) representing the data collected in United Kingdom,
which they are plotted in figure 9.

The slowly decay of the ACF (¢) and C(¢,¢,t) function (Fig-
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Fig. 9. The ACF(t) and C(t,t,t) of measured data

ure 9), demonstrate that the time series xyk () representing
the collected data of COVID-19 pandemic is not stationary.
B Data analysis and model selection

Like the French and Germany data, we apply the differenti-
ation operator to the time series xy (¢) as follow

(1 - B)de[((l‘)
= yuk(t) (20)

deUK (l‘)

By taking d = 1 we obtain a stationary process yyx(t). Af-
ter plotting the ACF (¢) and C(¢,1,1) we observe that process
yuk(t) can be modelled by MA model of order 1 or 2. So,
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based on the algorithm described above (equation 17) we
represent the estimated parameters in Table 3.
In figure 10 we have summarized the obtained results using

Table 3
Estimation of the model parameters MA(1) and MA(2)
selected to represent the data yy (¢)

Parameters of models | (1) n(2) o2
MA(T) —6.855 15.475
MA(2) 0.259 | 0.151 | 0.743

the two selected ’a priori’ models, in which we have plot-
ted the different ACF(t) and C(t,t,t) of simulated data us-
ing models MA(1) and MA(2) and transformed data yyx (¢).
By analysing the results represented in Figure 10, we re-

Fig. 10. (a):The ACF(t) and C(¢,t,t) of measured data, (b): sim-
ulated and measured data, (c) ACF(t) of simulated yyk(¢) using
the model MA(1) and MA(2) and (d) C(¢,t,t) of simulated yyg (¢)
using the model MA(1) and MA(2)

mark that the model MA(2) is more suitable to represent
the data yyk(¢), so by adding the trend component using
a polynomial with fourth degree Pyk(t) = ast* + a3t +
axt> +ayt +ag (where ag = 0.00 a3 = —0.365,a, = 21.299,
a; = —300.312, ap = 380.423. As see in the figure 10 (b)
that the simulated data have approximately the same be-
haviour like the collected data representing the time series
of COVID-19 in United Kingdom between February and
May. We have calculated the relative error, in order to make
a quantitative analysis, between the measured values and the
estimated values by the formula describing in equation 18
which is, in the case of United Kingdom data is equal to
0.32, this value is inferior to those obtained in the case of
French data and approximately equal to the obtained value
in the Germany data.

3.3. Italy data analysis

In this section we will consider the fourth country in Eu-
rope which it has the first more infected country by COVID-
19, its Italy. In figure 11 we represent the collected data
of infected people in Italy between February 21 and May
17, 2020. Like the previous data, collected in France, Ger-
many and United Kingdom, we represent the ACF(¢) and
the C(¢,,t) in order to see if the data is stationary or not. Its
clear from the curve (Figure 12) of the ACF(¢) and C(z,1,1)

of the original data x;(¢) is not stationary.
B Model selection Like the French, Germany and United
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Fig. 11. The collected data in Italy
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Fig. 12. ACF(t) and C(t,t,t) of measured data

Kingdom data, we apply the differentiation operator to the
time series x;(¢) as follow

Vi) = (1-B)x()

yi (1) 21

By taking d = 1 we obtain a stationary process y;(¢). After
plotting the ACF(¢) and C(t,t,t), we observe that the pro-
cess yy(t) can be modelled by MA model of order 1 or 2. In
the figure 13 we have summarized all ACF () and C(,2,1)
of collected and transformed data y;(¢).

Based on the obvious figure 13 (a), we observe that the
process y;(t) can be modelled by MA model of order 1 or
2. So, based on the algorithm described above (equation 17)
we represent the estimated parameters in Table 4.

In the Figure 13 (b), we remark that the model MA(2)
is more suitable to represent the time series y;(¢), and
by adding the trend component using a polynomial with
fourth degree Py(t) = ast* + ast® + apt® +ayt +ag (where
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Fig. 13. (a):The ACF(¢) and C(¢,t,t) of measured data, (b): sim-
ulated and measured data, (c) ACF(¢) of simulated y;(¢) using the
model MA(1) and MA(2) and (d) C(z,t,t) of simulated y;(¢) using
the model MA(1) and MA(2)

Table 4
Estimation of the model parameters MA(1) and MA(2)
selected to represent the data y;(r)

number of persan
[
(o]

T N LR R T R R e A
3
g Lo ﬂ?;e ...................................
e
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Fig. 14. Daily number of affect person in USA

095F

—— ACF(t) of collected data

—#— C(t.Lh) of collected data H

Parameters of models ﬁ( 1) E(2) o2
MA(T) 0.969 1221
MA(2) —0.031 | 0.345 | 0.726

as = 0.002 az = —0.296,a, = 12.116, a; = 5.981, ap =
—465.551). In the Figure 13 (b) we can see that the sim-
ulated data have approximately the same behaviour like the
collected data representing the time series of COVID-19 in
Italy between February and May. We have calculated the
relative error between the measured and estimated values by
the formula describing in equation 18 which is, in the case
of Italy data is equal to 0.21, this value is inferior to those
obtained of all obvious presented data (from: France, Ger-
many and United Kingdom).

3.4. USA data analysis

Now we will consider the data collected in more infected
country in the world, the data representing the infected per-
son by COVID-19 in United States of America (USA) be-
tween February and May 2020. The time series xy, () rep-
resenting the data collected in USA was presented in Figure
14.

As the previous data, collected in France, Germany and
United Kingdom, we represent, in the first time, the ACF (¢)
and the C(t,,t) of the collected data in USA in order to see
if the data is stationary or not.

Its clear from the curve (Figure 15) of the ACF(¢t) and
C(t,t,t) that the original data xy,(¢) is not stationary.

B Model selection
In order to eliminate the trend component, we apply the dif-
ferentiation operator to the time series xy,(f) as follow

Vixua(t) = (1—B)xyslt)
= YUsa (t) (22)
By taking d = 1 we obtain a stationary process yy,(#). Af-

ter plotting the ACF (¢) and C(t,1,¢) we observe that process
Yusa(t) can be modelled by MA model of order 1 or 2. So,

ACE(t) and Cltth

055 | I i
]

5 10 15 20

Fig. 15. ACF (t) and C(¢,t,t) of the time series xy g4 (?)

based on the algorithm described above (equation 17) we
represent the estimated parameters in Table 5.
In Figure 16 we have summarized the obtained results using

Table 5
Estimation of the model parameters MA(1) and MA(2)
selected to represent the data yy ()

Parameters of models | /(1) h(2) o2
MA(D) 3510 6311
MA(Q2) 0.119 1.050

0.569

the two selected ’a priori’ models, in which we have plot-
ted the different ACF (¢) and C(z,¢,t) of simulated data us-
ing models MA(1) and MA(2) and transformed data yy, ().
By analysing the results represented in Figure 16, we re-
mark that the model MA(1) is more suitable to represent
the data yyy(¢), so by adding the trend component using
a polynomial with fourth degree Pysa(t) = ast* + ast® +
art> +ait +ag (where ag = 0.014 a3 = —2.697,a = 25.609,
a; = —248.341, ap = 380.423). As we can see in the Figure
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ACF(Y)

ACF(t) and Clttn)

Fig. 16. (a):The ACF(r) and C(t,t,t) of measured data, (b): sim-
ulated and measured data, (c) ACF (¢) of simulated yp,(¢) using
the model MA(1) and MA(2) and (d) C(¢,t,7) of simulated yy5,(¢)
using the model MA(1) and MA(2)

16 (b) that the simulated data have approximately the same
behaviour like the collected data representing the time series
of COVID-19 in USA between February and May.

Finally we make the quantitative analysis we have calcu-
lated the relative error between the measured values and the
estimated values by the formula describing in equation 18
which is 0.2836, this value is comparable to those obtained
in the previous data, so the model is acceptable to represent
the collected data in USA.

3.5. Moroccan data analysis

In this section we will consider the last data presented in
this paper. This data was collected, between February and
May 2020, in Morocco, one of the countries representing a
minimum of person infected by COVID-19. The time series
xm(t) representing the data collected in Morocco was pre-
sented in Figure 17.

The same processing will be applied to the time series

300 T T T T T
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i DO T B R R AR S A R e SR s s
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Fig. 17. Daily number of infected person in Morocco

xm (1), in the first time we calculate the ACF (¢) and C(¢,1,1),
these functions have been presented in Figure 18.

The curves presented in Figure 18 indicate that the slowly
decreasing of the two functions (ACF(r) and C(z,t,t))
demonstrate that the time series xp(¢) is not stationary due

1 : :
: ——— ACF(t) of collected data
........................... Cltis) of collected data 1

ACF(t)and C{ttL)

Fig. 18. ACF (t) and C(¢,t,t) of the collected data x),(¢)

to the presence of trend component. So, in order to elimi-
nate this component we apply the differentiation operator to
the time series x)/() as

Vi) = (1—B) ()
= ym(t) (23)

By taking d = 1 we obtain a stationary process y(t). After
plotting the ACF (¢) and C(z,t,t), Figure ?? (a), we observe
that the process yy(f) can be modelled by MA model of
order 1 or 2. So, based on the algorithm described above
(equation 17) we represent the estimated the parameters in
Table 6.

By analysing the results represented in Figure 19, we re-

Table 6
Estimation of the model parameters MA(1) and MA(2)
selected to represent the data yy, ()

Parameters of models | A(1) h(2) o2
MA(D) 0.031 0.5953
MA(Q2) 0.027 | —0.772 | 0.782

o5 ———-Confidence interval

ACF() and ClLen

1 , JL¥ A
e e & B B 2T

o 5 10 15 20 o 5 10 5 0
Lagt Lagt

Fig. 19. (a):The ACF(¢) and C(t,t,t) of measured data, (b): sim-
ulated and measured data, (c) ACF (r) of simulated y)(¢) using the
model MA(1) and MA(2) and (d) C(¢,t,1) of simulated yp;(¢) using
the model MA(1) and MA(2)

mark that the model MA(1) is more suitable to represent
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the data yy(¢), so by adding the trend component using a
polynomial with third degree Py (t) = a3t + axt> +ayt +ay
(where a3 = —0.003,a, = 0.170, a; = 1.147, ay = —2.169.
As see in the Figure 19 (b) that the simulated data have ap-
proximately the same behaviour like the collected data rep-
resenting the time series of COVID-19 in Morocco between
February and May. We have calculated the relative error be-
tween the measured values and the estimated values by the
formula describing in equation 18 which is 0.412, this value
is not good comparatively to those obtained in the previous
data but statistically is accepted.

4. Discussion: COVID-19 pandemic
modelling

In this section we will discuss the problem of modeling
COVID-19 data by one model independent of the country
in which the data was collected. By analysing the result
obtained in the previous that all studied time series are com-
posed of two components : the trend component and the
random component. The trend component was modelled
by fourth order polynomial except the moroccan data which
was represented by third order polynomial, and the random
component was modeled by a moving average MA with the
first order or second order.

So, the question here is : it’s possible to find a suitable model
’generalized model’ able to represent the collected data, rep-
resenting the infected person by COVID-19, regardless of
the country in which the data was collected?

In order to give an approximate response of this question we
proceed as follow

4.1. Random component modelling

In the same manner, and because all random component can
be represented by a moving average with order 1 (MA(1)),
we will consider only that all previous data, the random
component, are modelled by MA(1). The coefficient of the
‘mean’ MA(1) model, will be considered as the average of
the parameter values of the MA(1) models representing the
previous data in each country.

The obtained result are summarized in the following table 7.
In the Figure 20 we have presented the ACF (¢) and C(¢,t,1)

Table 7
The ’'mean’ model parameters MA(1) to represent the
random part data

Parameters of models | /(1) o?
MA(1) —1.688 | 0.5953

of the random component for different data (from different
countries) and the mean model.

2 4 6 8 1 12 14 1 18 o 4 &8 8 0 12 14 16 18 20
Lagt

Fig. 20. (a): The ACF(¢) of measured and simulated data using
mean model, (b): The C(#,7,¢) of measured data and simulated data
using mean model

4.2. Trend component

Because the propagation of the COVID-19 depend on the
population number in each country. In general we have a
concave polynomial but with different values. So, the com-
ponent value depend on the collected data in each country.
This component is defined for each data. In the Figure 21
we represent the simulated data, respectively in France, Ger-
many, Italy, United Kingdom, USA and Morocco , using the
mean MA(1) model.

{3l ]

Fig. 21. Simulated and measured data representing the COVID-
19 contamination in six countries :(a): France , (b): Germany, (c):
Italy, (d): United Kingdom, (e): United States of America and (f):
Morocco

5. conclusion

In this paper we have studied the identification problem of
the evolution of COVID-19 contamination in six country in
three continent : Europe, North America and Africa. The
identification problem of the collected data, in each country,
was represented by two component: the trend component
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representing the slowly variation of the data and the random
component representing random variation "stochastic value’.
By analysing the time series representing the collected data
of COVID-19 pandemic, we have eliminate the trend com-
ponent by using the differentiation operator to obtain a sta-
tionary process, and the random component ’stationary pro-
cess’ is modeled by a moving average with order 1 or 2. The
identified model can represent the able to represent the col-
lected data in each countries.

In the last we have proposed that the random component can
be modeled by a MA(1) with known parameters.
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Abstract—Wideband transmission is now preferred over nar-
rowband communication due to recent technological advance-
ments. With fewer parameters, wideband transmission can esti-
mate more accurately the Direction-of-Arrival (DOA). This paper
presents an analytical study for the localization of wideband
sources to test the performance of DOA estimation on a small
antenna array, under various levels of noise and different angular
distances. Two incoherent wideband methods are presented to
prove the accuracy of DOA estimation, the first is the Test
of Orthogonality of Projected Subspaces (TOPS) method, and
the second is the Test of Orthogonality of Frequency Subspaces
(TOFS) method, using a Uniform Circular Array (UCA) geom-
etry. Finally, the results prove that TOFS performs well.

I. INTRODUCTION

A variety of fields employ antenna arrays, including radar
[1]-[3], sonar, medical imaging, wireless communication sys-
tems [4], [5], and others. Antenna arrays are recommended
since they can detect the DOA of multiple signals which is
not possible with a single antenna.

A different types of strategies have been proposed to address
the challenge of estimating the Direction-of-Arrival (DOA) of
numerous wideband signals. The incoherent signal subspace
algorithms estimate the wideband DOAs by employing multi-
ple narrowband signals that have been independantly decom-
posed from a wideband signal [6]. In particular, these methods
use narrowband DOA estimation approaches. Although the
incoherent approaches improve the estimation efficiency in
high Signal-to-Noise Ratio (SNR) areas, it suffers when the
SNR of certain frequency ranges is low. In other words,
the effectiveness of the final estimation will be effected by
poor estimations from certain frequency bins. However, the
coherent signal subspace algorithms have been proposed to
solve these limitations and enhance DOA estimation efficiency
[7]. The idea of this algorithms is how to focus covariance
matrices, and many techniques for obtaining a proper focusing
matrix have been proposed [8], [9]. However, every focusing
approach depends on initial values, which are the predeter-
mined directions of arriving signals, and the effectiveness of
the coherent signal subspace approaches requires these initial
values [10].

In this research, we interest in two incoherent approaches
to localize the directions on a small antenna array, under
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various scenarios. The first is the Test of Orthogonality of
Frequency Subspaces (TOFS) technique [11] that produces
the searching steering vectors of every conceivable DOA and
every frequency. This method estimates correctly when the
SNR is large, since it is an incoherent technique [11], and
suffers in noisy environments.

The second known as Test of Orthogonality of Projected
Subspaces (TOPS) technique [12] employs the signal and noise
subspaces of different frequency ranges to provide high DOA
estimation efficiency without the need for initial values. This
approach does not require focusing angles or a beamforming
matrix, does not suffer from bias at high SNR, and integrates
frequency bins better than other incoherent approaches at low
SNR. However, the method has a drawback that the spectra
calculated by TOPS contains some spurious peaks, making it
difficult to estimate the real DOA of targets.

In this research, we concentrate on the comparison of those
algorithms described above, using a small antenna array, in
a different values of SNR and for different angular distance,
in order to offer better comparison in term of advantage and
disadvantage of each technique.

The reminder of the paper is structured as follows. Section
II presents the model of wideband signal and the fundamentals
of direction estimation, and the wideband methods, followed
by Section III that describes the simulation outcomes. Finally,
Section IV involves the conclusion and future work.

II. PROBLEM FORMULATION AND WIDEBAND METHODS
A. Wideband Signal Model

Two dimensional array consists of sensors that are placed
in a circle where the distance between two consecutive sen-
sors may vary, the simplest example is the uniform circular
array of M elements, where the distance is equal to half
of the wavelength. We consider that the L wideband sources
(L < M) are identifiable or can be computed [13], [14], with
identical bandwidth that impinging on the number of array
sensors from directions (01,602, ...,01). The Fig. 1 shows the
UCA configuration for broadband DOA estimation.

It is supposed that all signals are uncorrelated and exist
within the bandwidth between the lowest frequency of signal
sources (f1,) and the highest frequency of signal sources (fzr).
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Fig. 1: UCA structure of M elements
The received signal in wideband scenario at the m'" sensor

L
zm(f) = Z f)expJf*COS(Hz—som))an(f), (D

where s;(f) is the I** wideband signal, n(f) is an additive
white gaussian noise at the m*" element, and ¢,,, is the angular

location of the m!" sensor:

(m—1)

i 2
The received broadband signals are then split into K narrow-
band signals. Then, the output signals, in Fourier domain, can
be written in vector form as follows:

QPmZQ’/T

x(fi) = A(fi,0)s(fi) +n(fi), 1<i<K, 3)
where f; €]fr, ful,
A(f;,0) = [a(fi,01), a(fi,02), ..., a(fi,00)], (4
[ exp (sz cos (6, - )) _
a(fi, 6) = : (5)

exp (J fi—~— 008(91 soM_l)>

The covariance matrix, in wideband case, can be calculated
by the formula:

E[x(fi)xH(fi)]
A(fi,0)Rss(fi) AT (f1,0) + 021,

where Rg(fi) = E[s(fi)s™(fi)], and I is an M x M unit
matrix. Assuming that the L signal sources are uncorrelated,
Rss(fi) has full order, then the signal subspaces matrix
Fs(f;) and noise subspaces array F,(f;) at frequency f;
may be generated using the covariance matrix’s eigen-values
decomposition as:

FS(fz) =

(6)

P‘l(fl)a >‘2(.f1)’ AL(fl)]? (7

Fo(fi) = Pov1(fi)s Anva(fi), -5 Au(fi)]l,  (8)

where A1(f), ..., Anm(fi) are the perpendicular eigen-
vectors of R..(f;), sorted in degrading rank by their eigen-
values.

B. TOFS method

In this study, the TOFS method proposed in [11] is used
to detect the direction of the incident signals, as well as
to demonstrate the performance of the ULA and UCA ge-
ometries. The test of orthogonality of frequency subspaces
(TOFS) technique employs the noise subspace derived from
the eigen-values decomposition of the correlation matrix for
each frequency as noticed in [11]. The orthogonality between
the steering vector and the noise subspaces is used to estimate
the DOA of each incoming wideband signal source. The vector
Qrors(9) is achieved as follows, [15]:

Qrors(0) = [a"(f1,0)Fu(f1)ET (f1)a(f1,0)
H(f2aQ)Fn(fQ)Fiq(fQ)a(f?aa)
H(vaa)Fn

(fK)FI (fx)a(fx.0)]
(&)

The estimated DOA of sources can be obtained by judging the
extent that each element near to zero, DOA estimation could
be achieved using the following equation:

é = arg max
g 4 O'min(g)

where o,in(0) is the shortest singular value of Qrors(6).

(10)

C. TOPS Method

TOPS computes the DOA of arriving wideband signals by
utilizing both the signal and noise subspaces of every fre-
quency range [12]. Then, we extract the signal subspace F( f;)
and the noise subspace F),(f;) from the eigen-decomposition
of the covariance matrix of every frequency range. TOPS beats
coherent signal subspaces in that it eliminates the need for
initial DOA predictions for the frequency transform process.

The m!" term on the diagonal of the frequency transforma-
tion matrix ¥(f;,6), used by TOPS, is defined as:

The signal subspace Fi(f;) of the frequency range f; is
converted into another frequency group f; using ¥(f;,6),
where the transformed signal subspace U;;(6) is defined as
follows [12]:

2
= exp(ifi 5 cos(b — o)) (D)

where Af = f; — f;. The Eq. (12) can be expressed as:
Uij(0) = VY(AS,0)A(fi,0)G(fi)
(13)

= Af;.0)G(f),

where 6 is the transformed 6 by using the frequency transform
matrix V(f;,6), and G(f;) is a full order square matrix that
verifies Fy(f;) = A(fi, 0)G(fi).
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An array manifold at any frequency and DOA can be
altered into another array manifold at a different frequency
applying this transformation process. As a result, the converted
matrix is a complete order matrix and can be utilized for
the following orthogonality test between converted matrix and
noise subspaces, which is discussed in details in [12].

Considering that the frequency range of interest is f;, the
estimator matrix Qrops(f) is given as [16]:

cooy Ul (0) Fa(fx)]

Qrops(0) =

The effectiveness of the computed covariance matrix, which
is basically determined by the number of snapshots and the
SNR of the received signal, proves the efficiency of the DOA
estimation. The subspace projection technique is applied in
TOPS signal processing to minimize signal subspace com-
ponent leakage in the estimated noise subspace. Then, the
projection matrix P;(6) is calculated as [16]:

P(f:,0) = I — (™ (f:,0)a(f,0)) " a(fi,0)a™ (f:,6), (15)

where [ is an M x M identity matrix. Then, we acheive the
noise robust matrix Q’,pg(f) substituting the component
U;;(8) of the Eq. (14) by a new converted signal subspace
matrix V;;(0).

Vij(0) = P;(0)Ui;(0) (16)

(VH(0)Fu(f2), VH(0)F,(f3),
o, VE(O)Fo(fx))

Q/TOPS (9) =

TOPS performs well when applying the equation (17) with
Qropg(0) because the projection matrix P;(f) eliminates
subspace estimation errors.

(18)

4 1
=arg maxr ————
[ Tmin (9)

where 0, (0) is the shortest singular value of Q' pg(6).

III. SIMULATION OUTCOMES

To examine the effectiveness of these approaches on a small
antenna array of M = 5 elements, four various examples using
Matlab software (2020a) are demonstrated. The received sig-
nals are divided into 256 blocks, and the number of snapshots
is assumed to be 500 samples. The signals have the same range
of frequencies. The noise level is lower in the first scenario,
and the sources are close. We utilize a far signals and a low
noise level in the second example. The noise level is high
in the third scenario, and the sources are close together. In
the last example, the noise level is high, and the sources are
thought to be distant.

A. Wideband DOA estimation in noiseless case with nearest
signals

The Fig. 2 presents the simulation outcomes of TOPS and
TOFS approaches, under a low level of noise (SNR= 20dB).
Three angles are choosen {#; = 15°,0, = 75°, 05 = 80°},
with the last two signals are considered closely placed by
Al = 5°.
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Fig. 2: Wideband DOA estimation using TOPS and TOFS
methods with SNR= 20dB and Af = 5°.

From Fig. 2, we remark that both methods are capable
to detecte the DOAs correctly. However, TOFS outperforms
TOPS in this case, and can estimate the real angles more
precisely. The TOPS method generates false peaks that can
effect on the performance of DOA estimation.

B. Wideband DOA estimation in noiseless case with farest
signals
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Fig. 3: Wideband DOA estimation using TOPS and TOFS
methods with SNR= 20dB and Af = 15°.
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The simulation results of TOPS and TOFS algorithms are
depicted in Fig. 3, under a low level of the noise (SNR=
20dB). In this case the DOAs are {#; = 15°,05 = 75°,605 =
90°}, the last two signals are spaced by Af = 15°.

This figure proves that the approaches are able to estimate
the actual DOAs correctly. More undesired angles are observ-
able in the spectrum of TOPS, while the resolution accuracy
of TOFS becomes more effective and performant, due to the
signals are separated well.

C. Wideband DOA estimation in noisy case with nearest
signals

The Fig. 4 depicts the wideband DOA estimation of TOPS
and TOFS techniques, under a high noise level (SNR= 3dB).
The three angles are {67 = 15°,6, = 80°,65 = 85°}. The
last two signals are separated by Af = 5°.
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Fig. 4: Wideband DOA estimation using TOPS and TOFS
methods with SNR= 3dB and Af = 5°.

From Fig. 4, it is evident that the algorithms are not able
to calculate the two closest DOAs effectively, due to these
methods suffers when the floor is noisy and also when the
signals are close.

D. Wideband DOA estimation in noisy case with farest signals

The Fig. 5 presents the simulations outcomes of TOPS and
TOFS approaches, under a high level of the noise (SNR=
3dB). The three DOAs are {#; = 15°,05 = 75°,605 = 90°},
with the last two signals are spaced by Af = 15°.

From this figure, we observe that only TOPS can separate
between the angles correctly and can estimate the DOAs, due
to TOPS work better in a noisy environment, while TOFS is
the best when the SNR is mid-to-high.

IV. CONCLUSION

This paper presents several simulations to show the ef-
ficiency of two incoherent wideband methods on a small
antenna array, under different levels of noise and distance
between adjacents antenna elements. The number of antenna
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)
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o
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Fig. 5: Wideband DOA estimation using TOPS and TOFS
methods with SNR= 3dB and Af = 15°.

elements have a great impact on the type of array configuration
that will be selected. For example, the performance of a
circular array is affected more than other geometries when
the number of elements IV are reduced due to the nature of
the arrays are arranged. As a results, we used a small array of
5 antenna elements. The simulation outcomes show that the
wideband DOA estimation accuracy of TOFS is better than the
TOPS approach when the SNR is mid-to-high, while TOPS
surpasses TOFS in a noisy environment. It is also proves that
TOFS can eliminate all unwanted peaks, while TOPS cannot.
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Abstract—This paper focuses on identification of switched
linear Systems. Our idea is to formulate this identification
problem as a subspace clustering problem. More precisely, in
this paper we are going to view the K-plane algorithm as a
solution for the identification of switched linear systems. The K-
plane algorithm is an extension of K-means algorithm: while the
K-means algorithm clusters points using centroid, the K-plane
algorithm cluster them using planes. This algorithm is based on
assigning each point to the nearest plane, and then estimate the
parameters of each plane using an iterative way, based on the
euclidean distance between points and planes. Some simulation
results are presented for different configurations in order to see
how these configurations influence the estimation of subsystem
parameters.

Index Terms—System Identification, switched linear systems,
subspace clustering, K-plane

I. INTRODUCTION

This paper addresses the problem of the identification of
switched linear systems using a subspace clustering approach
especially the K-plane algorithm. This identification problem
combines two important research areas in a single one, it com-
bines the identification problem and the subspace clustering
problem.

The class of switched linear systems is an important and
popular class of hybrid systems, because of its ability to model
numerous complex phenomena. Whereas the identification of
this type of systems is strongly needed in the application area,
hence the identification of switched linear systems has sev-
eral interesting presented methods using different approaches,
including : clustering-based approach (ex. [1], [2] and [3]),
algebraic and geometric approach like in ([4], [5]), recursive
approach (ex. [6]). The idea in this paper is to formulate
the identification problem as a clustering problem where the
observation vector is interpreted as a point in space. A such
approach is already used in [7], that uses the supervised
learning algorithm such as Support Vector Machines (SVM)
to formulate the identification problem as a classification
problem. In our approach we are going to use unsupervised
learning algorithm such as subspace clustering. There exist
several subspace clustering algorithms in literature, including
iterative methods (ex. K-means, K-planes and K-subspaces
[8]), algebraic methods (ex. Generalized principal component

analysis GPCA [9]), statistical methods (ex. Random sample
consensus (RANSAC) [10]) and spectral methods [11][12].
In the presented work we use the clustering approach for
identification of switched linear systems, using an iterative
based subspace clustering method, especially the K-plane
algorithm that is considered as an extension of K-means.

The K-plane algorithm generalizes the K-means algorithm.
The K-means clustering algorithm assigns N data points
into ng clusters so that similar data points can be grouped
together around the nearest center. The K-plane algorithm
assigns N data points into ng hyper-planes so that similar
data points can be grouped together on the same hyperplane.
The K-plane algorithm has been first introduced in [13]. The
K-plane algorithm have a lot of applications especially in
clustering and identification problems, also used for more
purposes like for piece-wise linear regression [14], which can
learn continuous as well as discontinuous piece-wise linear
functions, the main idea is to repeatedly partition the data
and learn a linear model in each partition. Before that it is
used for identification of discrete time hybrid systems in the
Piece-Wise Affine (PWA) systems [3], this problem involves
the estimation of both the parameters of the affine sub-models
and the partition of the PWA map from data. Also some of the
newest researches using K-plane to design methodologies for
style clustering on stylistic data, where each cluster depends
on both the similarities between data samples and its latently
or apparently distinguishable style [15]. In [16] a solution is
proposed for eigenvalues problems especially while the data
points are almost on the same hyperplane, where normal K-
plane clustering fails. Therefore, the K-plane is one of iterative
methods of subspace clustering, that are largely used and had
some advantages: their simplicity since they alternates between
assigning points to subspaces and estimating the subspace
parameters, it can handle both linear and affine subspaces
explicitly and converges to a local optimum in a finite number
of iterations. However, iterative methods are suffering from
some drawbacks: it requires the number of subspaces and the
dimensions to be known beforehand, either it depends on an
initialization step.

The paper is organized as follows: the considered identi-
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Fig. 1: A set of sample points {(y; ¢¢)}; in R® drawn from
an union of three subspaces.

fication problem and proposed algorithm are formulated in
Section II, especially the considered problem and notation in
subsection II-A and the proposed algorithm in subsection II-B.
Experimental results and discussion are given in section III
Section IV concludes the paper and gives some perspectives.

II. NOTATION AND PROPOSED ALGORITHM
A. Notation and considered identification problem

Consider a discrete time switched system parameterized as
follows:

ye = 1 O, + 1x, + e 4))

where

o {y:}N, is the output sequence of the system and N
represents the number of samples.
e ¢ € Rt is the observation vector at time ¢ defined as:

Ut
S : 2
Ut—d

with {u;}¥, the input sequence of the system and d is
the order of the system.

o 0; € R is the parameter vector associated to the j®
subsystem with j € {1,...,n} and n; is the number of
subsystems.

o A € {1;..;n4} is the label (also known as the discrete
state) of the active subsystem at time ¢.

e (i is the intercept of the subsystem j.

o {e:}, is the noise sequence which is assumed to be
a zero mean sequence uncorrelated with {u;}¥, and

{AHLy

Fig.1 represents such a data collection with d =1, ny = 3
and where the basis represents components of {¢;}¥ ; and
the vertical axis represents {y; }V ;.

In the following we consider p; = 0 V j for convenience
and )\; is assumed to be unknown. Given d and ng, the
objective of this paper is to realize the estimation of the
parameter vectors {6;}7=, using {(y:; o)},

Such an identification problem corresponds to a subspace
clustering problem. The main goal of subspace clustering is
to estimate the number of subspaces ng, the dimension d, the
parameter vectors {0;}7, of each subspace and the label \;. It
is clear that, if n; = 1, then this estimation problem can easily
be solved. However, when ngs > 1, the subspace clustering
problem becomes significantly more difficult due to a number
of challenges as discussed in [17].

Among the various subspace clustering algorithms, the K-
plane algorithm can solve the two following problems: (1) this
algorithm can estimate, for each point (y;; ¢:), the subspace
membership, i.e. the active subsystem, (2) this algorithm can
estimate the equation of each subspace, i.e. the parameter
vectors in our case. Therefore the K-plane is applied in the
next subsection on our identification problem.

B. The proposed algorithm

The K-plane algorithm is an iterative algorithm: several
steps are iterated until convergence of the algorithm. Let
consider the following two-step process:

step 1
In this first step we assume that we know estimates
0; for j e {1,...,ns}.

For each time ¢ it is possible to estimate the output
of each subsystem. This output is noticed ¥;,; and
is defined by:

iy = 670, 3)

From these estimates it is possible to estimate the
active subsystem at each time ¢, i.e. it is possible
to estimate );. This estimate corresponds to the
label of the nearest subsystem, among subsystems
parameterized by 6, from y,. A, is thus defined by

Xt = argmin;ei,n,d¢/; “)

where d,/; is the distance between y; and the sub-
system parameterized by 6;:

dij; = lye — Y5 (%)

step 2
In this second step we assume that we know esti-
mates \; for ¢t € [1; N].

The estimation of the parameter vector 6; can be
done using the least squares algorithm gathering
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all the points (y:;¢;) which belongs to the j**
subsystem:

0; = argminy, Z lys — ¢39]‘|2 ©)
t/xe=j

It might be noticed that the first step depends on estimates
provided in the second step, and second step depends on
estimates provided in the first step. It follows that the im-
plementation of these two steps requires an iterative process.
This iterative process is described in Algorithm 1.

Algorithm 1 Identification algorithm

Input: The set of points {(y¢; @)}, the number of subsys-
tems n, and the order d.
1: Initialize the parameter vector of each subsystem j ran-
domly.
2: For each time ¢, implementation of the first step in order
to estimate \; (see (3), (4) and (5)).
3: For each j, implementation of the second step in order to
estimate 0; (see (6)).
4: Repeat 2 and 3 until convergence.
Output: Assign each point to the closest estimated subsystem
and estimate of the parameter vector for each subsystem.

As discussed in the introduction, the K-plane algorithm
is very sensitive to the initialization of parameters: its be-
havior depends on the initialization. Therefore we advise to
implement this algorithm several times and to keep only
the parameter vectors that are obtained with several different
initialization.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we give some numerical results in order
to evaluate performance of proposed identification algorithm.
We choose the order of the system as d = 1. Different
configurations are tested: different values of Signal to Noise
Ration (SNR), different values for n, different values for V.

For each numerical experiment, the input sequence is
{u;}¥; is a random integers sequence drawn from the discrete
uniform distribution on the interval [—10, 10].

A. First experiment

In this first experiment we consider a switched linear system
such that d = 1, ns = 2. The parameter vectors ¢; and 65 are
0.948

given by:
0.820
b1 = ( —0.316 ) » b= ( 0.533 ) ™

The sequence {\;}Y; is randomly generated. In this first
experiment N = 100 and we choose the SNR values as 3dB,
10dB , 30dB, 50dB, 100dB and 300dB.

Subsystem number: j=1
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Fig. 2: First experiment: estimate of 6, as function of iterations
for N =100 and SNR= 300dB.
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Fig. 3: First experiment: estimate of 65 as function of iterations
for N = 100 and SNR= 300dB.

In the case SNR= 300dB, Fig.2 shows the estimated
parameters of the first subsystem as a function of number
of iterations, and Fig.3 shows the estimated parameters of
the second subsystem. These results show that the proposed
algorithm allows the estimation of parameter vectors.

We keep the same previous system and the number of points
at N = 100 and we test the presented algorithm with different
SNR. Tab I gives estimates of #; and 65 for different levels of
SNR. These results show that the algorithm is efficient even
in presence of noise.
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Fig. 4: Third experiment: estimate of #; as function of itera-
tions for NV = 100 and SNR= 300d 5.

01(1) | 61(2) || 62(1) | 62(2)
Real value 0.948 | -0.316 || 0.820 | 0.533
SNR =3dB 0.994 | -0.445 || 0.783 | 0.565
SNR =10dB 0.931 | -0.331 || 0.795 | 0.584
SNR =30dB 0.948 | -0.311 || 0.822 | 0.534
SNR =50dB 0.947 | -0.315 || 0.820 | 0.532
SNR =100dB | 0.948 | -0.316 || 0.820 | 0.533
SNR =300dB | 0.948 | -0.316 || 0.820 | 0.533

TABLE I: First experiment: estimate of #; and 5 as function
of SNR.

B. Second experiment

In this second experiment we consider the same system than
in the first experiment and we increased the number of points
to N = 1000. We directly test the algorithm for different noise
level. Tab II gives estimates of 67 and 6 for different levels of
SNR. We can see that for NV = 1000 the algorithm performs
better than for NV = 100. We can say that if there are more
available points, then the estimation is better and fast.

0.1 | 0.2) || 02(1) | 02(2)
Real value 0.948 | -0.316 || 0.820 | 0.533
SNR =3dB 0.985 | -0.437 || 0.818 | 0.727
SNR =10dB 0.948 | -0.307 || 0.836 | 0.578
SNR =30dB 0.949 | -0.316 || 0.820 | 0.536
SNR =50dB 0.948 | -0.316 || 0.820 | 0.533
SNR =100dB | 0.948 | -0.316 || 0.820 | 0.533
SNR =300dB | 0.948 | -0.316 || 0.820 | 0.533

TABLE II: Second experiment: estimate of 6; and 6, as
function of SNR.

C. Third experiment

We consider another switched linear system such thatd = 1,
N =100 and ns; = 10. The two first subsystems have the same

parameters than in the first experiment (see (7)), parameters
of the other subsystems have been randomly generated. We
consider here the noise free case.

The estimated parameters for the first subsystem are given
in Fig.4. Compare with Fig.2, it appears that the estimation is
more difficult with an increasing number of subsystems.

D. Fourth experiment

In order to test the influence of the number of available
data and the noise level we have realized different estimations
of parameter vector, for each subsystem with different values
of N, ny, and SNR. As shown in the figure (Fig.5) for
every configuration (a) and (b) as described in the caption
of the figure, we change the values of SINR and see how
many iterations takes the algorithm to converge to the right
subsystem parameters or near to it, in order to test the
convergence of the algorithm versus the noise level.

16 T
—*—(a)
14 (b)] ]
12
10
)
c
o
‘§ 8
2 "
6L
4 \/\
2r *
0 . . . . .
0 50 100 150 200 250 300

SNR(dB)

Fig. 5: Number of convergence iterations as a function of
SNR, for (a): N = 1000 and ny, = 2, (b): N = 10 and
ng = 2.

The figure (Fig.5) indicate that the k-plane is not very
sensitive to noise, especially when the number of subsystems
is small it can estimate the subsystem parameters even if the
SN R ratio is important like in (b), anyway the algorithm keeps
converging in a finite number of iterations, and in a small
period of time. Generally K-plane and other extensions of
iterative methods like K-means, K-subspaces, are considered
as a very simple way of improving the performance of
algebraic algorithms in the case of noisy data [17]. The K-
plane algorithm is very good when dealing with noisy data
sequence, but steel suffer from a big drawback added to its
sensitive to initialization is that it needs to give the number of
planes (subsystems) in advance.

E. Fifth experiment

In all the previous experimental results, in all the cases, the
algorithm converge in a finite number of iteration that is not
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Fig. 6: Fourth experiment: clustering of N = 10 points
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Fig. 7: Fourth experiment: clustering of N = 100 points char-
acterizing ns = 3 subsystems in the noisy case (SNR=30dB).

very big (less than 20 iterations), this demonstrates the good
performance of the K-plane algorithm in the identification of
linear system of order d = 1.

After assigning each point to the nearest subsystem based on
the euclidean distance in the equation (5), and after estimating
the parameters of each subsystem we can use these parameters
to show these subsystems as clusters, which are plotted as
surfaces that considered as subspaces, as figured in (Fig. 6)
and (Fig. 7). From these figures it is clear that points belong
to hyperplane characterizing the identified subsystems. Each
plane is considered as a subsystem that has two parameters
0;(1) and 6;(1), that are estimated using the previous algo-
rithm.

IV. CONCLUSIONS AND PERSPECTIVE

In this paper we used the K-plane algorithm as a solution
for identification of switched linear systems problem. This
algorithm assigns each point to the closest estimated subsys-
tem and estimate the parameter vector for each subsystem. In
addition, an evaluation of this algorithm is done with different

configurations: different number of points, different number of
subsystems and different level of noise. The K-plane algorithm
appears to be useful, especially in the case of noisy data due to
it’s iterative refinement. Future work will be localized on the
comparison of the present algorithm with other identification
algorithms, in addition trying to find an indicator about the
number of subsystems without offering it in advance.
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Abstract—In several scientific fields, it is very important to
have a representation of the system in order to control or optimize
its function. In this paper, we consider the identification problem
of finite impulse response (FIR) for single-input single-output
nonlinear systems under perturbations and with binary-valued
measurements. In the one hand, we have used an algorithm based
on the framework of reproducing kernel Hilbert Spaces (RKHS)
to identify the impulse response of the minimum phase channel.
Then, the convergence analysis of this algorithm is presented in
the presence of noise. Some examples of experimental illustrative
result are provided in this work to demonstrate the effectiveness
of the kernel affine projection algorithm (KAPA) in nonlinear
system identification from output binary measurements.

Index Terms—Finite impulse response, Nonlinear systems,
Identification, Reproducing kernel Hilbert spaces, Positive de-
fined kernel

1. INTRODUCTION

ver the last two decades, the area of signal processing

has experienced a significant improvement due to the
development of new techniques for the handling of non-
linear problems. Among the machine learning applications,
we can cite pattern recognition [1], acoustic echo cancellation
[2], system identification [3], [4], channel equalization [5],
time series analysis [6], as well as decisional issues such as
classification and nonlinear regression [7]. The data available
in these application fields, obtained from natural systems, are
very complex and cannot be explained by traditional linear
models. Consequently, the researchers have experienced the
need to to propose non-linear algorithms that could handle a
wide class of problems.

The non-linearity of engineering applications often moti-
vates the use of control techniques based on a non-linear
model. As in literature, numerous forms of input/output
type nonlinear framework presented; Commonly, the Volterra-
Wiener model [8], [9], the Hammerstein model [10], [11],
the NARMAX model [12], and so on. In recent years, a
lot of attention has been focused on kernel methods [13],
[14]. Indeed, many studies on the employment of the kernel
approach, essentially in modeling complex nonlinear systems,
and channel identification have been issued (see e.g. [5], [15]-
[25]). This kind of modeling is performed by the represen-
tation of the considered process by scalar products, which
represent a mathematical model based on the architecture and
the operation of the non-linear system. Kernel methods are

characterized by their ability to adapt and process information,
which makes them able to model the most common real
systems. These techniques exploit the theory of reproducing
kernels. The main idea is the kernel trick, allowing to trans-
form the data by the help of a nonlinear application, in a
high dimensional space known as the Reproducing Kernel
Hilbert Space (RKHS) [13], [26], where linear methods can be
enforced. Many adaptive kernel filtering algorithms were de-
veloped so far in the scientific literature. Among them are the
kernel least mean squares (KLMS) [27], and kernel recursive
least squares (KRLS) [28]. To enhance the reliability of these
approaches, a number of their subtypes were also proposed,
including the normalized kernel least-mean square (KNLMS)
[29], complex kernel LMS (CKLMS) [30], quantized KLMS
(QKLMS) [31], fixedbudget QKLMS (QKLMS-FB) [32], set-
membership NLMS (SM-KNLMS) [33], extended KRLS (Ex-
KRLS) [34], sliding-window KRLS (SW-KRLS) [35], and so
on. In this paper, we concentrate on finite impulse response
nonlinear system identification with binary values output ob-
servations. Firstly, we use an algorithm based on the positive
definite kernel to estimate recursively the channel parameters.
Secondly, the mean square error (MSE) will be employed to
evaluate the precision of the estimated values.

The remainder of the paper is organized as follows: It starts
in Section II with a statement of the identification problem. A
thorough description of the kernel affine projection algorithms
is given in Section III, and in Section IV it is implemented to
a finite impulse response nonlinear system with binary-valued
measurements. Finally, in Section V, we give the conclusion.

II. THE CONSIDERED IDENTIFICATION PROBLEM

In this section, we describe the structure of the non-linear
model that will be used for the identification problem of fi-
nite impulse response (FIR) single-input single-output (SISO)
communication channels. It is obtained by cascading a static
nonlinear block and a linear dynamic model. The general
Hammerstein is a popular model to represent the nonlinear
system’s behavior. The Figure 1 illustrates that this model
consists of two blocks.

The following equations are used to represent the system
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Tk Minimum Phase di ™ Yk Sk
50 o \% Blu
br.

Fig. 1: Block of the Hammerstein system with binary
outputs and noises.

described in Fig. 1:

L—1

Yk = Z hi f(xr—i) + by ()
i=0

where zj; and y; designate the input signal and the output

system at time k respectively, {h;}~=' is the impulse response

coefficients (FIR filter), by is a random noise and f(.) the

nonlinear characteristic.

The system output yg, is detected by the binary sensor BJ[.],

with a finite threshold C' € R, as in the following mathematical

formula:
1 if Yk > C
sk = Blyr] = - 2
k ] {—1 otherwise . @
Therefore, to improve the evaluation of the system and to
achieve a successful minimum phase channel identification
result, we suppose that:

(A1) The input sequence xj, is independent and identically
distributed bounded random process with zero mean.
The measurement noise by is Gaussian and independent
of the system input x; and output yy

There is no delay in the system, i.e. hg # 0.

The C-value is available (i.e. known).

(A2)

(A3)
(Ad)

III. KERNEL AFFINE PROJECTION ALGORITHM

In this section, we describe the kernel affine projection
algorithm (KAPA) [38]. It belongs to the class of stochastic
gradient algorithms. Their main idea is to perform the linear
affine projection algorithms (APA) [38] in the kernel feature
space, which is associated to the positive definite kernel x,
through the characteristic map ¥ (.) as defined by the following
equation:

v : X —H
x — k(z,.) 3)

where k(z,.) is a reproducing kernel, denoting the inner
product (¥(z),.), X is the input space, and H is the higher-
dimensional space (nonlinear Hilbert space). Different kernel
functions are available, such as polynomial kernel, linear
kernel, Laplace kernel and radial based kernel (Gaussian).
However, among these different types of kernels, the Gaussian
kernel is the most popularly used Mercer kernel [13], due to
its universal approximation property and its high stability in
numerical terms:

i — ;>

952 ) s Vmi,xj e X. “4)

k(x;,xj) = exp (—

where o > 0 is the kernel width.

The optimization problem of the KAPA algorithm, without
the regularization term, can be expressed as :
n
min
=

1=

(di — U (z;))? 3)

where d; is the desired response of the model at time ¢ and
W(x;) is the response of the model at the i*" observation z;.
Based on the representation theorem [37], the solution of the
optimization problem (5) is as follows:

\I/()n = Zan,k"‘?(ka) (6)
=1

where o, = (@ 1, O 2y ey Q) | S the vector of the model
parameters. The combination of (6) and (5) leads to the
following problem:

a, = argmin ||d,, — H,al? 7
«

where d,, = (dy,ds,...,d,)" is the desired response vector
until time n and H,, is an n x m matrix whose (i, j)!* element
was k(z;, ;). If we suppose that (H,] H,,)~! is available, the
resolution of the problem (7) is obtained by :

a, = (HH,)Hd, (8)

The fundamental idea of the Affine Projection Algoritm (APA)
is to take into consideration the last p observations of the
model only {Zy,...,Zn_p+1}. In this case, d,, is now a p-
element column vector, d,, = (dp,...,dn—pt1)', and H,, a
matrix of size pxm where the element (¢, j) is k(@p—it1, Z;),
given by :
/’i(znal‘l) "{(mvuxm)
Hn = . .
H(‘Tnprrlel) '%(xnprrlyxm)

The optimal coefficient vector o, is identified at time n+1,
by minimizing ||cv,, 11 — @, || under the constraint of posterior
error nullification for the last p observations.

: 2
I’IllIlanJrl ||O[n+]_ - OlnH ) (9)
s.t dn+1 - Hn+1an+la
_ T _
where  d,i1 = (dpt1s s dn_pi2) s On =
(Qnt11y s Qnt1m) | and H,i1 is always a matrix

p X m whose (i,7) element is k(zp_;t2,2;).

Note that m indicates the model order. At time n + 1,
when a new data is received (x,1). The update of the model
coefficients is performed as follows :

Qn41 = Qnp +77HTTL+1(€I+HH+1HTTL+1 “Hdnp1 —Hppian)

(10)
As recommended in [36], a control parameter for the con-
vergence step (7) and the regularization term (/) have been
introduced into this equation.
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IV. EXPERIMENTAL RESULTS

In this section, we present some numerical examples to
illustrate the performance of the kernel affine projection algo-
rithm for the SISO nonlinear system, by employing a minimum
phase model. The numerical data were generated according to
(1) and (2) with C' = 0.5. The kernel algorithm was applied
in different scenarios. For each scenario, the estimated FIR
model order is L = 3. To implement the kernel algorithm,
we selected the Gaussian kernel width o = 0.5, the step-size
parameter 1) equal to 0.2 and € = 0.001. The input sequence xy,
is a random sequence of zero mean with a uniform distribution
n [—1;1]. A Gaussian noise of zero mean is added to the
output. The noise amplitude is adjusted to obtain a desired
value of the signal-to-noise ratio (SNR). We define the SNR
by the following relationship:

Eldy)]
E[b2]

n

SNR = 10log,, { } (11)
where F[.] is the mathematical expectation.

To measure the estimation quality, the following mean square
error (MSE) was used:

1
MSE = <2 || s

where M being the total amount of Monte Carlo iteration.

—ay V() |7 (12)

A. Minimum Phase Channel Identification

In this model, we consider a third order channel, described
by the RIF-PM model and given by the following equation :

d, = f(xx) — 0.860 (1) +0.740f (21_2)

Zeros:z; = 0.4300 + 0.7451%, zo = 0.4300 — 0.7451%,
(13)
The characteristics of this channel are represented in figure
2. It has two zeros, all of them inside the unit circle (i.e.
minimum phase channel).

Magnituce (dB)

quency (Tt

Phase (degrees)
o
Imaginary Part
o

(¢}

X

0.5 1 15 2 -1 -05 0 05 1
Frequency (xTt Real Part

Fig. 2: Minimum phase channel characteristics

As a first simulation experiment, for the purpose of examin-
ing the performance of the KAPA algorithm, we select a data
length N = 1000 and SNR = 10dB. The simulation results
are shown in Figure 4.4. From this figure 3, we can conclude
that the KAPA algorithm is able to find the minimum phase
channel impulse response that is similar to the true impulse
response.

T T
—© Measured Channel MP
1+ X Estimated using KAPA
[
3 ®
& 05
c
o
Q
n
)
14
$ 0
=]
Q
E
o)
£-05
[
c
0
_1 L
L L L L L
1 15 2 25 3
Targets

Fig. 3: Estimation of the minimum phase channel impulse
response for N = 1000 and SNR = 10dB.

The next simulation experiment focuses on the influence
of the data length NV on the kernel affine projection algorithm
performance. Note that N is a data length that has an impact on
the estimated channel parameters and the level of the evaluated
mean square error.

In order to evaluate the influence of the data length on the
estimation results, a Monte-Carlo simulation with 50 iterations
for SNR = 10dB was performed. The algorithm was applied
for different values of N (NN varies from 400 to 1200). The
Figure 4 show the estimation of the amplitude and phase of the
minimum phase channel, using the KAPA algorithm for dif-
ferent numbers of data length and for SNR (SNR = 10dB).
From these results, we observe that the estimated amplitude
and phase patterns, via the kernel algorithm, have the same
shape as those of the measured data. On the one hand, we
notice that the amplitude and phase estimates are following
the real model in perfect accordance to the measured data
for a higher data length N = 1200, at SNR = 10dB.
On the other hand, we notice that even if the number of
data length is relatively small (N = 400, and N = 800),
the kernel algorithm provides a good estimate of the model
with a small difference between the estimated and measured
values. These results are very important because we are in the
minimum phase channel case. Under troublesome conditions
(N = 400), the performance of the kernel affine projection
algorithm (KAPA) is deteriorated on the phase estimation and
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we observe a big difference between the estimated impulse
response of the minimum phase channel and the measured
phase. Basically, the Gaussian noise has a clear effect on
the phase estimation and a minor effect on the amplitude
estimation.

i
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Fig. 4: Estimation of the amplitude and phase of the
minimum phase channel, for different data length /N and
SNR = 10dB.

In the third experiment, to observe the noise level impact
on the estimation quality, a Monte-Carlo simulation with 50
iterations (N = 1000) has been carried out for different SN R
values. The algorithm was applied for the following SNR
levels: 4dB, 8dB, and 12dB. In this simulation, the frequency
domain is considered. The estimation of the amplitude and
phase of the minimum phase channel is shown in Figure
5 for different SNR and for a data length N = 1000
using the kernel algorithm. From this figure, we remark that
the estimated amplitude and phase patterns, in the case of
SNR = 12dB have the most common form of the measured
data. Compared to the amplitude and phase patterns estimated
in the case of SNR = 4dB and SNR = 8dB, we notice a
small deviation between the estimated and measured amplitude
and phase patterns. Figure 5 shows that the kernel algorithm
is able to estimate the amplitude and the phase, with good
precision, even in a highly noisy environment (SN R = 4dB).

Finally, in a fourth simulation experiment, we implement
the KAPA algorithm on a nonlinear system under pertur-
bations and with binary output measurements (see Section
II) and we compare its performances to those obtained with
other algorithms proposed in the literature, namely the least
mean squares (LMS) and kernel least mean squares (KLMS)
[27] algorithms. To demonstrate the advantage of the KAPA
algorithm compared to LMS and KLMS, we test them on
an illustrative example of a Monte-Carlo simulation with 50
executions for different SN R.

Measured Channel
= = = Estimated for SNR=4dB
= = = Estimated for SNR=8dB
Vi == Estimated for SNR=12dB W

1
o

Magnitude (dB)

~10F

I I I I I
0.2 0.4 0.6 0.8 1 12 1.4 16 18 2
Normalized Frequency (xmrad/sample)

Phase (degrees)

I I I I I
0 0.2 0.4 0.6 0.8 1 12 1.4 16 18 2
Normalized Frequency (xmrad/sample)

-100 L I

Fig. 5: Estimation of the amplitude and phase of the
minimum phase channel, for different SN R and N = 1000.

The variations of the mean square error (MSE) as a func-
tion of different SNR values are illustrated in Figure 6.
As expected, the performance improves with the increase of
SNR. From these results, we can observe that the impact
of SNR is obvious, which is related to the regularity of
the evaluated mean square error. We can clearly observe that
the KAPA algorithm achieves the best performance and it
is also statistically significant. From Figure 6, we see that
the MSE values provided by the KAPA algorithm are very
small, compared to those given by other algorithms in the
literature (LMS and KLMS), for different SN R and for a data
length N = 1000, which implies that the estimated parameters
are very close to the exact values. For example, when the
SNR = 20dB, we observe that the MSE value obtained via
the KAPA algorithm is 0.015, but using the LMS and KLMS
algorithms we have an MSE equal to 0.04 and less than 0.04
respectively.

We discuss the choice of the convergence step value (7).
This constant has a significant influence on the convergence
speed and stability of the adaptive algorithm. Substituting
the correct value (typically a small positive constant) for
n is necessary for the proper implementation of the KAPA
algorithm:

o If the value of n chosen is too small, the time needed to
find the optimal solution by an adaptive filter is too long.

o If the chosen value of 7 is too high, the adaptive filter
becomes unstable and the output yields deviations.

Now we will try to evaluate the influence of the convergence
step on the behavior of the three algorithms (LMS, KLMS and
KAPA). For this reason, we perform a Monte-Carlo simulation
with 50 iterations of data (on the data length N = 1000).
The MSE evolution as a function of 7 is shown in Figure
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Fig. 6: MSE for different SN R values and for a data length
N = 1000.
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Fig. 7: MSE for different 1 values and for N = 1000 with
SNR = 20dB.

7. The results demonstrate that, when n = 0.3, the MSE
of three algorithms will increase with an augmentation of 7).
Nonetheless, the KAPA algorithm is still best than the LMS
and KLMS algorithm over any 7. The improved performance
of the KAPA algorithm, with smallest MSE, is attained by the
step size parameter 7 = 0.1.

V. CONCLUSION

In this paper, we have reformulated the nonlinear system
identification problem with a binary output as an estimation
problem. An estimation algorithm based on positive definite

kernels has been presented for the identification of the am-
plitude and phase of the minimum phase system impulse
response. Simulation results show that the KAPA algorithm is
appropriate for the identification of systems from binary mea-
surements on the output in the presence of the measurement
noise, even if a relatively small data length (N < 800) was
considered. The step size setting 7 has an important influence
on the learn performance of all the three algorithms (LMS,
KLMS and KAPA). In fact, for the minimum phase channel
impulse response, the affine kernel projection algorithm with

= 0.1 is more successful in the low noise condition and is
more robust compared to other step sizes 7).

Future works, will focus on an improved adaptation of this
algorithm to more complicated systems.
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Abstract—Le développement des ordinateurs quantiques con-
stitue une menace majeure sur les cryptosystemes de chiffre-
ment modernes basés sur la factorisation des entiers et le
logarithme discret. Cette situation a suscité la recherche de bons
cryptosystemes qui permettent d’assurer la sécurité contre les
menaces quantiques ainsi que classiques. Certains cryptosystéemes
se révelent résistants a la puissance des ordinateurs quantiques,
dont I’un est basé sur les codes correcteurs d’erreurs, introduit
en 1978 par McEliece. Une variante de ce cryptosysteme est
basée sur les codes de contrdle de parité a densité modérée
quasi-cyclique (QC-MDPC), caractérisés par leur taille de clé
compacte, contrairement au cryptosysteme original de Goppa-
McEliece. Dans ce travail, les algorithmes de décodage utilisés
pour le Cryptosysteme McEliece basé sur les codes QC-MDPC
et leurs caractéristiques ont été présentés.

Index Terms—Cryptographie post quantique, cryptographie
basée sur les codes, codes QC-MDPC, Décodage Bit-Flipping.

I. INTRODUCTION

La cryptographie est la science qui utilise les mathématiques
pour chiffrer et déchiffrer des données afin de les protéger. Il
est utilisé pour stocker des informations importantes ou pour
les transmettre via des canaux de communication non fiables
afin qu’elles ne puissent &étre lues par personne d’autre que
le destinataire légitime. Il existe deux principaux types de
cryptographie : la cryptographie symétrique qui nécessite que
I’expéditeur et le destinataire aient des clés identiques pour
chiffrer et déchiffrer les données, tandis que la cryptographie
asymétrique, ou cryptographie a clé publique, utilise une clé
publique pour chiffrer les messages et une clé privée pour un
récepteur pour les déchiffrer.

Les techniques cryptographiques ont été utilisées pour fournir
une communication sécurisée entre les utilisateurs depuis
I’époque classique. Cependant, les progres dans le domaine de
la physique quantique et les calculateurs quantiques pourraient
donner naissance a de puissants ordinateurs quantiques au
cours de la prochaine décennie. un ordinateur quantique est
fondamentalement différent des ordinateurs traditionnels. Les
grands ordinateurs quantiques peuvent logiquement résoudre
certains problemes beaucoup plus rapidement que les ordina-
teurs classiques en utilisant les meilleurs algorithmes connus a
ce jour. Contrairement aux ordinateurs classiques, qui utilisent
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des bits qui ne peuvent prendre que les valeurs 0 ou 1, les ma-
chines quantiques utilisent des qubits qui peuvent représenter
simultanément différents états possibles intermédiaires entre 0
et 1, on parle de superposition.

Ce développement quantique ainsi que les résultats de Pe-
ter Shor [1] sur I’existence d’algorithmes polynomiaux pour
résoudre les problemes de logarithme discret et de factori-
sation des nombres sur les ordinateurs quantiques, ont été un
stimulant en cryptographie pour rechercher d’autres problémes
de calcul difficiles sur lesquels des cryptosystémes puissants
peuvent €tre construits. Il s’est avéré que les méthodes de
chiffrement a clé publique qui peuvent étre considérées comme
stires dans le monde de I’informatique quantique ont été créées
a la fin des années 1970 [2], c’est-a-dire avant méme que
les chercheurs pensent aux menaces possibles des ordinateurs
quantiques sur la cryptographie.

L’un des moyens de se défendre contre un ordinateur quantique
consiste a modifier les systemes de chiffrement des données
pour passer a la cryptographie quantique, qui utilise des
dispositifs quantiques pour transférer les informations. Le
probleme de cette transition est qu’il est nécessaire de modifier
les systemes de chiffrement au niveau physique. Une autre
solution est la cryptographie post-quantique, qui utilise des
systemes et des problemes classiques, mais si complexes que
méme un ordinateur quantique ne peut pas les résoudre.

Il s’agit du développement de nouveaux types de systemes
cryptographiques qui peuvent étre appliqués avec les ordina-
teurs classiques d’aujourd’hui, mais qui ne seront pas affectés
par les méthodes quantiques de demain. En principe, il existe
de multiples domaines prometteurs en cryptographie post-
quantique, dans ce travail nous allons nous concentrer sur
I’'un d’entre eux qui est la cryptographie basée sur les codes
correcteurs d’erreurs, qui est basée sur la difficulté de décoder
un code en présence d’erreurs aléatoires. En particulier, nous
mettons ’accent sur les algorithmes de décodage pour la
version de McElice qui utilise des codes QC-MDPC. Ceux-
ci constituent une alternative intéressante aux codes Goppa
généralement utilisés.

Dans la section suivante, nous présentons la cryptographie
basée sur les codes correcteurs d’erreurs et les définitions
nécessaires. Dans la troisicme section, nous décrivons le
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systeme de chiffrement QC-MDPC McEliece, sa génération
de clés, son chiffrement et déchiffrement. Dans la quatrieme
section, nous présentons les algorithmes de décodage du QC-
MDPC McEliece.

II. CRYPTOGRAPHIE BASEE SUR LES CODES

La cryptographie basée sur des codes utilise des codes de
correction d’erreurs pour construire une cryptographie a clé
publique. Nous donnons un apercu des définitions pertinentes
de la théorie des codes avant de passer au cryptosysteémes
basés sur les codes.

A. La théorie des codes

La théorie des codes de détection et de correction d’erreurs
traite de la transmission et du stockage fiables des données.
Dans la pratique, les supports d’information ne sont pas
totalement fiables, dans le sens ou le bruit (toute forme
d’interférence) provoque fréquemment une distorsion des
données (figure 1). Pour faire face a cette situation indésirable
mais inévitable, une certaine forme de redondance est intégrée
aux données d’origine. Grice a cette redondance, méme
si des erreurs sont introduites (jusqu’a un certain degré),
I’information originale peut étre récupérée, ou du moins la
présence d’erreurs peut étre détectée. Cependant, ce type
de redondance ne corrige pas l’erreur. C’est exactement ce
que font les codes de correction d’erreurs, ils ajoutent de la
redondance au message original de sorte qu’il est possible pour
le récepteur de détecter I’erreur et de la corriger, en récupérant
le message original. Ceci est crucial pour certaines applications
ou il n’est pas possible de renvoyer le message. Le probleme
crucial a résoudre est alors de savoir comment ajouter cette
redondance afin de détecter et de corriger autant d’erreurs que
possible de la maniere la plus efficace.

Codage
source

Codage canal

Information ——>|

Bruit ~~ Canal

Décodage
source

Décodage
canal

Information «<——

Fig. 1. un modele de schéma de communication avec bruit

Un mot d’information m est codé par un codeur en un mot
de code c. Le mot de code c est transmis sur le canal. Le
canal peut transformer le mot codé et introduire des erreurs.
En sortie du canal, on obtient le mot re¢u y. En sortie du
canal, on obtient le mot recu y. Le décodeur tente alors de
décoder y et produit un mot décodé ¢’. Si ¢’ = ¢, alors nous
disons que le décodage a réussi.

Définition 1: (Code Linéaire). Un code linéaire C de
longueur n et de dimension k£ sur F, est un sous-espace
vectoriel de F; de dimension k.

Définition 2: (Matrice Génératrice). Soit C' un code linéaire
(n,k,d) sur F,. Une matrice génératrice G de C est une
matrice k x n dont les lignes forment une base de C.

Le codage est I’opération qui consiste a multiplier un vecteur
m de IE"; par la matrice génératrice G d’un code. Le vecteur
du code c ainsi construit est appelé mot de code.

c=mG

On dit qu’'une matrice génératrice G est sous forme
systématique si elle s’écrit :

G = [Ix|P]

avec I; est la matrice identité de taille k.

Définition 3: (Matrice de contrdle de parité). Une matrice de
contrdle de parité pour un code linéaire C' de parametres (n, k)
est une matrice H de taille (n — k) x n tel que :

c¢HT =0 si et seulement si ¢ € C.

Si G est une matrice génératrice d’'un code C' et H est une
matrice de contrble de parité du méme code C, alors :

GHT =0

Définition 4: (Syndrome). Le syndrome d’un mot y € F™ par
rapport a une matrice de controle de parité H est le vecteur:

s=yHT

Ainsi, les mots de code d’un code linéaire sont exactement
les mots pour lesquels s = 0 (indépendamment du choix de
la matrice de contrdle de parité pour ce code).
Définition 5: (Poids et distance de Hamming). Le poids du
Hamming est le nombre des éléments non nuls d’un mot de
code.
La distance de Hamming d entre deux mots de code est le
nombre des symboles qui different.

Définition 6: (code quasi-cyclique). Un code linéaire est
dit quasi-cyclique si chaque décalage cyclique par un entier
ng est également un mot de code.

B. Cryptosystemes basés sur les codes

Le premier cryptosysteme asymétrique basé sur un code
correcteur d’erreurs est le cryptosysteme de McEliece. 11 a été
initialement proposé sur la base des codes binaires de Goppa
par Robert McEliece en 1978 [2].

Ce cryptosysteme utilise la matrice génératrice G du code
binaire de Goppa, une matrice de brouillage S et une matrice
de permutation P. G est la clé secrete, et la clé publique est
obtenue en multipliant les trois matrices SGP.
Contrairement aux systemes conventionnels de chiffrement a
clé publique tels que RSA, le cryptosysteme McEliece possede
des algorithmes de chiffrement et de déchiffrement de faible
complexité.

Les codes Goppa sont considérés comme les meilleurs codes
pour le cryptosysteme McEliece pour les raisons suivantes :
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o l’existence de plusieurs algorithmes de décodage rapide
du code en temps polynomial.

e le code Goppa est facile a définir, mais difficile a re-
connaitre, car la matrice génératrice du code est presque
aléatoire ; tout polyndme irréductible sur le champ
GF(2™) convient pour sa compilation

o Pour l'instant, le cryptosystetme McEliece basé sur les
codes Goppa n’est pas susceptible d’étre attaqué.

Néanmoins, ce cryptosysteéme présente un certain nombre
de faiblesses telles qu’une taille de clé énorme et un faible
taux de transmission. Mais il reste un candidat pour la cryp-
tographie post-quantique et de nombreuses modifications ont
été construites sur sa base. Les premiers pas vers I’objectif
de réduire la taille de la clé sans réduire le niveau de sécurité
des systemes cryptographiques post-quantiques ont été donnés
par Monico et al. au moyen de codes de controle de parité a
faible densité (codes LDPC) [3], puis par Gaborit avec des
codes quasi-cycliques [4], et enfin par Baldi et Chiaraluce par
une combinaison des deux [5]. Cependant, les cryptosystémes
McEliece utilisant des codes LDPC sont susceptibles d’étre
attaqués sur la base de mots de code de faible poids [6].
Une sous-classe intéressante de codes LDPC est constituée
par les codes MDPC (Moderate Density Parity Check) et leur
variante quasi cyclique (QC-MDPC) [7]. Ces codes ont des
densités suffisamment faibles pour permettre un décodage par
des méthodes simples comme 1’algorithme de bit flipping de
Gallager. Cependant, les densités sont suffisamment élevées
pour empécher les attaques basées sur la présence de mots
tres €pars dans le code dual.

III. CRYPTOSYSTEME DE MCELIECE BASE SUR
QC-MDPC

Misoczki et al. [7] ont proposé une variante trés prometteuse
basée sur des codes MDPC quasi cycliques. Dans cette section,
nous allons nous focaliser sur leur constuction.

A. Génération de clés

Supposons que nous voulons générer des clés pour le QC-
MDPC de McEliece avec un niveau de sécurité \. Soit ng,
n, r, et w les parametres supportant ce niveau de sécurité A
(tableau I).

Nous générons d’abord un code QC-MDPC aléatoire en choi-
sissant aléatoirement un vecteur h dans F7, tel que le poids
de h soit w. n

Nous divisons h en ng = - parties égales:

h=1[ho|hi|..|hny]

Ensuite, nous construisons la matrice de contrdle de parité H
comme suit :

H=[Ho|Hy | .| Hp1]

ou chaque H; est la matrice cyclique avec h; comme
premicre ligne. Il est nécessaire que le bloc H,,_; soit
inversible. S’il ne 1’est pas, nous devons recommencer la
procédure de génération de clé en choisissant un autre h
au hasard. H est la clé privée. La clé publique G sous sa

forme systématique est obtenue a partir de H comme suit :

G=(I, | Q), o

(anoal HO)
(H' | Hy)

nofl

(H_l 1 Hn072)

no—

TABLE 1
PARAMETRES DU MCELIECE QC-MDPC RECOMMANDES PAR [7]

Niveau de
séeurité A | 0 | " " vt
80 2 9602 4801 90 84
80 3 10779 3593 153 53
80 4 12316 3079 220 42
128 2 19714 9857 142 | 134
128 3 22299 7433 243 85
128 4 27212 6803 340 68
256 2 65542 | 32771 | 274 | 264
256 3 67593 | 22531 | 465 | 167
256 4 81932 | 20483 | 644 | 137

B. Chiffrement

Afin de chiffrer un message m € IE";, on génere une erreur
aléatoire e € IFZ; de poids < ¢. Le texte chiffré est le vecteur.

c=mG+e
C. Déchiffrement

Pour obtenir le texte en clair m a partir du texte chiffré recu
¢ € F, un algorithme de décodage est nécessaire. Gallager
[8] a proposé 1’algorithme de bit flipping pour décoder les
codes LDPC. 11 est basé sur 1’idée que chaque bit du syndrome
indique si 1’équation correspondante est satisfaite ou non.
Ainsi, si une position est impliquée dans de nombreuses
équations non satisfaites, il s’agit trés probablement d’une
erreur. Le méme algorithme peut &étre utilisé pour les codes
MDPC quasi-cyclique.

Contrairement au cryptosysteme McEliece standard, la vari-
ante QC-MDPC n’utilise pas la matrice de brouillage S et
la matrice de permutation P, parce que la récupération de la
clé privée H a partir de la clé publique G est suffisamment
difficile. Notez qu’en raison de la forme systématique de G,
le texte en clair apparait dans les k premiers bits. texte en
clair apparait dans les k premiers bits du texte chiffré y avec
relativement peu de bits inversés.

IV. ALGORITHMES DE DECODAGE DU QC-MDPC

Gallager a initialement présenté les codes LDPC [8] comme
ayant des matrices de contrdle de parité régulieres, pour
lesquelles le poids des lignes et le poids des colonnes sont
constants. Avec des matrices de controle de parité régulieres,
chaque bit participe au méme nombre de contrdles de parité, ce
qui simplifie la description des décodeurs. Chaque ligne d’une
matrice de controle de parité peut €tre considérée comme
une équation de contrdle de parité. Les positions non nulles
d’une ligne indiquent quels bits du mot regu participent dans
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cette équation. Les positions non nulles d’une colonne de la
matrice de controle de parité indiquent dans quels équations
de contrdle de parité participe un bit. Le syndrome d’un mot
recu indique quels équations ne sont pas satisfaites. Gallager a
présenté aussi un décodeur itératif pour les codes LDPC. Cet
algorithme de décodage est généralement appelé algorithme de
bit flipping. L algorithme fonctionne comme suit: il calcule le
nombre d’équations de contrdle de parité non satisfaites pour
chaque bit du mot recu, puis il inverse les bits dont la valeur
dépasse un certain seuil. Ce processus est itéré jusqu’a ce que
le mot soit décodé.

Dans [7], afin de décoder leur code MDPC, les auteurs ont
utilisé 1’algorithme original bit flipping de Gallager [8] qui
a été introduit pour la premiere fois pour les codes LDPC.
Lalgorithme 1 commence par calculer le syndrome du mot de
code recu. Il vérifie ensuite le nombre d’équations de controle
de parité non satisfaites associées a chaque bit du mot de code,
et inverse chaque bit qui participe dans plus de b équations
non satisfaites. Ces étapes sont répétées jusqu’a ce que le
syndrome devienne nul ou que le nombre maximal d’itérations
soit atteint. Dans ce cas, on dit qu'une erreur de décodage s’est
produite.

La différence entre 1’algorithme original bit flipping de Gal-
lagher et celui proposé par les auteurs est la maniere dont
le seuil est calculé dans chaque algorithme. Dans le travail
original, une séquence de seuils b; est calculée au préalable
pour toutes les itérations. Dans [7], les auteurs ont utilisé un
seuil différent recalculé dans chaque itération, ils ’ont pris
comme étant le nombre maximum d’équations non satisfaites
moins un certain 0 > 0, seuil = Max,p. — . Cela peut
augmenter la vitesse de convergence des algorithmes, mais
peut également provoquer I’inversion d’un plus grand nombre
de bits corrects, ce qui peut entrainer un échec du décodage.

Algorithm 1 Algorithme de décodage Bit flipping

Require: H € F,*" (matrice de contrdle de parité), y € Fy
(mot regu)
Ensure: y € F3
1: for iter =1... MaxIter do

2 s=yHT

3:  if s =0" then

4: break

5:  end if

6:  th = seuil(contexte)
7. fori=1...ndo

8: upcli| =< s, h; >
9: if upc[i] > th then
0yl =1-yfi
11: end if

12:  end for

13: end for

14: return y

Le premier tour de I'implémentation supplémentaire de
la soumission BIKE [9] comprenait un décodeur appelé

Black-Gray, Il fonctionne de maniere similaire a 1’algorithme
de bit flipping de Gallager, mais crée deux ensembles
supplémentaires lors de chaque itération, un ensemble noir
contenant les bits inversés, et un ensemble gris contenant les
bits légerement en dessous du seuil. Apres le bit flipping
initial, les bits de 1’ensemble noir dont plus de la moitié des
équations de contrdle de parité ne sont pas satisfaites sont
inversés a nouveau. Ensuite, les bits de I’ensemble gris, dont
plus de la moitié des équations de contrdle de parité sont
insatisfaites, sont inversés. Les deux ensembles noir et gris
aident a corriger les bits qui ont ét€ inversés par erreur et
donne confiance dans I’exactitude des inversements effectués.

Dans [10], les auteurs ont observé le comportement du
décodeur Black Gray et ont constaté que lorsque wt(e)/n est
suffisamment petit, la probabilité d’inverser des bits par erreur
devient faible, ce qui élimine la nécessité de 1’approche Black-
Gray, ce qui a conduit les auteurs a proposer de nouvelles
variantes de BG : Un décodeur Black dans lequel chaque
itération consiste uniquement en 1’étape du bit flipping et du
masque noir. Un décodeur Black-Gray-Flip qui commence par
une itération Black-Gray et le reste des itérations est le méme
que le décodeur bit flipping. Un décodeur Black-Gray-Black,
qui commence par une itération de Black-Gray et plusieurs
itérations de Black. Les résultats ont montré qu’au niveau de
performance, le décodeur Black-Gray-Flip atteint un meilleur
taux de décodage d’erreurs par rapport aux autres variantes.

Le travail [11] examine deux autres variantes de décodeurs
bit flipping. La premiere est 1’algorithme de bit flipping en
parallele, dans lequel un seuil spécifique pour I’inversion des
bits est d’abord calculé, puis les bits a tous les endroits
pertinents sont inversés en parallele. Le second adopte une
approche progressive, dans laquelle le seuil est recalculé a
chaque fois qu’un bit est inversé.

les auteurs de BIKE dans le 2éme round du compétition de
NIST [12] ont défini une variante de I’algorithme bit flipping
appelée Backflip. Cet algorithme attribue a chaque bit inversé
une valeur ttl : time-to-live, un temps de vie. Apres 1’expiration
de ce temps, le bit est inversé de nouveau. Les bits ayant
un nombre plus élevé d’équations de contdles de parité non
satisfaites se voient attribuer des valeurs de durée de vie plus
élevées pour indiquer qu’ils sont plus fiables. Cette méthode
permet d’enregistrer des informations sur la fiabilité des bits.

V. CONCLUSION

Dans cet article, nous avons présenté une vue d’ensemble
sur la variante de McEliece basé sur les codes MDPC
quasi-cycliques, ainsi que leurs algorithmes de décodage.
Diverses tentatives d’amélioration du décodage bit flipping
ont été développées au cours des dernieres années. Nous
avons constaté que 1’utilisation de différents algorithmes lors
du décodage des codes qc-mdpc permet d’obtenir une aug-
mentation significative de la probabilité de déchiffrer un
message avec succes. Dans les travaux futurs, on va se
concentrer sur 1’amélioration des performances du décodeurs
des codes MDPC quasi-cycliques, en trouvant une combinai-
son de décodeurs permettant de minimiser le taux d’échec

47-



International Symposium on Artificial Intelligence and the Security of New Telecommunications Systems (CIA2ST’2022)

du décodage ainsi que le nombre d’itérations, et aussi en
introduisant une nouvelle méthode pour le choix du seuil ,
et en les comparant aux décodeurs existants.
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Abstract—The objective of this paper is to present a source
separation method using a sparse representation of the signals,
and to show that its performance is better than that obtained by
high-resolution methods in different noise level environments,
even under a closely spaced signal. Actually, so-called high-
resolution methods are based on the estimation of the covariance
matrix of the sensor signals. Thus, a sparse representation does
not use this covariance matrix to resolve the DOA. In addition,
a higher signal-to-noise ratio (SNR) scenarios displays a better
resolution. In that reason, our simulations results verify the
performance of each method by applying the algorithms in
different noise level environments and prove the efficiency of
the sparse representation.

Index Terms—Array processing, direction-of-arrival (DOA)
estimation, angle-of-arrival (AOA), sparse representation.

I. INTRODUCTION

In the last decade, the problem of sparse representations
has become particularly active and its applications have spread
to many fields. This problem has brought new challenges in
direction-of-arrival (DOA) estimation algorithm problems us-
ing the angle-of-arrival (AOA) technique. Over the past thirty
years, a great deal of work has led to the development of high-
resolution methods in the framework of uniformly distributed
antenna arrays and for narrowband type sources [1], [2]. These
are themes that give rise to many industrial applications:
Geolocation [3], Radiocommunication [4], Location systems
[5], etc. Also, the applications of the sparse representation of
received signals by the acoustic antenna are widespread in
many fields, such as blind signal separation [6], [7].

To apply the technique of sparse signal analysis to sound
source localization, we will use “ill-posed” inverse linear
problems [8] in which a priori information about the unknown
coefficients can be incorporated. A redundant representation
is considered in order to free the directional vector matrix
from its dependence on the source positions. This redundant
representation plays an important role in ensuring signal
sparsity [9]. To reinforce the signal sparsity, an essential point
of this algorithm is to use a non-quadratic term (l;-norm
in this case). A simplified method based on the Singular
Value Decomposition (SVD) of the received signals by the
acoustic antenna is also proposed under the name 1;-norm-
based Singular Value Decomposition (1;-SVD) algorithm [10].

This work focuses more specifically on the problems
encountered in antenna processing and source localization.

More precisely, we are interested in the estimation of the
DOA. In addition, high-resolution methods are introduced such
as beamforming, minimum variance distortionless response
(MVDR), The Multiple Signal Classification (MUSIC) and
Minimum norm (MIN-NORM). They are based on the estima-
tion of the covariance matrix of the sensor signals. However,
these methods require the use of a propagation model and
are not very robust to model errors, which can degrade their
performance.

This paper begins by presenting, in Section II, a model for
the received signals by an antenna array for the case where
the sources are narrowband [11], [12] and corrupted by a
uniform Additive White Gaussian Noise (AWGN), impinging
on a Uniform Linear Array (ULA). Subsequently, in Section
III, methods that are related to the estimation of the DOA
of sound sources are presented, we are interested in methods
whose spatial resolution is higher than that of conventional
antenna processing: MVDR, MUSIC, minimum norm and
a sparse representation for estimating DOAs of narrowband
sound sources. The simulations of the methods presented in
this paper were then performed in Section IV. Finally, in
Section V, conclusions will be drawn.

II. SIGNAL MODELING

A. Signal representation

Before presenting the data model, authors consider the same
assumptions taken in [13], as shown in figure (Fig. 1). This
antenna receives P (P < N) (P and N are the number
of sources andthe number of sensors, respectively) signals
from radiating sources with additive noise super imposed. It
is assumed that the emitted signals by these sound sources are
stationary, centered and uncorrelated with the additive noise.
The P sources are placed in a far-field, thus assumed to be
point-like, and the additive noise observed on the different

sensors is stationary, centered and of variance o2,
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Wave-front — .

Plane Wave

Fig. 1: Wave arrival schematic at ULA antenna.

The received signal on the n*" sensor at time ¢ is:

»
wa(t) =) si(t)a(0)+ba(t), n={0,1,--- . N-1}, (1)

=1

where s;(t) is complex amplitude of the i*" source, a (6;) is
the directional vector or transfer vector for the i** source and
by, (t) is the additive noise on the n'" sensor. It is assumed to
be white, Gaussian and with variance o. We can also simplify
the writing of the equation (1) by using matrices. Thus, if we
pose:

A(0) = (a(61) alb2) --- a(6y)), 2)
s(t) = [s1(t) s2(t) - sp(B)]", 3)
b(t) = [bo(t) bi(t) -+ by-1(t)], )

where A (6) is the matrix of directional vectors of sources of
dimension (/N x P), it contains the information on the angles
of arrival, s (¢) is the vector of the complex amplitudes of
the signals emitted by the P sources at time ¢ and b (t) is
the additive noise vector on the N sensors. The equation (1)
becomes [14]:

x(t) = A(8)s(t) + b(t). Q)

B. Covariance matrix

The basic principle of DOA estimation methods is to
determine the mathematical expectation between the received
signals in the form of a covariance matrix R for an observation
is given by:

R = Efz(t)z" (1)), (6)

= A(0) E[s(t)s" (t)] A"(0) + E[p()b" (1)), (D)
R Rp

= AO)R,A(0) + 21, (8)

where o2 is the noise covariance matrix with o2 is the power
of the noise for each element of the array and [ is the identity
matrix, the term H corresponds to the transpose-conjugate

combination of the matrix. In practice, the covariance matrix
is estimated from a finite number of time samples as:

1 T

~ P - H
R~ Ry =y (a(k)e" (k). ©
k=1
where z (k) is the signal vector sampled at time k and 7 is
the number of samples.

III. METHODS
A. Conventional beamforming

Source localization is one of the main tasks in antenna pro-
cessing and the simplest method is conventional beamforming.
A beamformer is a spatial filter that processes the data obtained
from a sensor array in order to increase the amplitude of the
signals relative to the background noise and/or interference.
The principle of this classical algorithm is to dephase, weight
and sum the signals at the output of each sensor.

"
wi1

o
\ —

92
\- Xa(t)

®

wN

yit)

/ Xn-1(t)
O

Fig. 2: Illustration of spatial filtering. Each output of the array
is multiplied by a coefficient of the filter.

The output signal of an N sensor array, followed by a spatial
filter, is expressed as:

y(t) = wHJc(t)7
]T

(10)

where w = [wyws---wy]" is the beamforming weighting
vector; it is a vector of dimension (/N x 1) that acts as a spatial
filter. The power at the output of the antenna is:

P, = Ely(t)y(t)*] = Elly(t)*) = w" Rw.
B. Capon’s method (MVDR)

In order to cope with the limitations of the conventional
beamformer presented above, which makes the interpretation
of the data is difficult, in addition to the nearby sources are
not discernible, such as its resolving power when locating
multiple sources, Capon proposed a method [15], in 1969 and
it is sometimes given the name of its author. This method
is based on spatial filtering to focus the direction of the
main lobe of the array while cancelling the power in other
directions, this technique is also called Minimum Variance

an
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Distortion Response (MVDR) [10]. This method is based on
minimization problem modeled by the following equation:

min P, = w? Rw subject to wa(d =0;) =1. (12)

w
Thus, we can obtain the power at the output of the antenna
by the following relation:

Pyvpr(9) = (13)

1
af (0)R—1a(h)
C. MUSIC method

The Multiple Signal Classification (MUSIC) method is an
example of this type of method that was first proposed by
Schimidt R.O. in 1986 [16] to estimate the DOA of signals.
It assumes that the theoretical covariance matrix has the
form given in the relations (6), (7) and (8) (with spatial
white noise) and that the covariance matrix of the signals
from the R, sources have full rank P. It is assumed that
(N > P) (N and P are the number of sensors and the
number of sources, respectively) and that the directional vec-
tors {a (01) a(62) -+ a(fp)} of the matrix (6) are linearly
independent. The source transfer matrix A is of full rank P,
which is:

rank(A(0)Rs A (0)) = P.

According to the relation (14), A (6) R;A™ () has P strictly
positive eigenvalues, and the other (N — P) eigenvalues are
all equal to zero. The spectral decomposition of the covariance
matrix R into eigenelements to separate the signal subspace
from the noise subspace can be expressed in the following
form:

R=ARA" 46T = UNUY = UAUE 462U UH, (15)

(14)

and,

U = [Us U, (16)

where A is the diagonal matrix of the eigenvalues of the matrix
R, U is the matrix formed by the eigenvectors corresponding
to the eigenvalues of the matrix R (ordered by decreasing),
Us = [u1 U . uP] and Ub = [UP+1 Up+42 . UN]
represent respectively the eigenvalue matrices associated with
the signal subspace and the noise subspace. The angular
spectral function obtained by the MUSIC method allows us to
determine the values of 6 for which this function is maximal
and it is defined as follows:

1
Pyusic () = o (6) 17

UpyUHa(6)

This relation (17) can also be expressed as the quadratic
norm of the projections of the signal subspace onto the noise
subspace:

(18)

1
Puusic(9) = —x )
Zi:P+1 laf (0)u;]?
where u; is the i*" vector of the matrix U, from the noise
subspace with i = {P+1, ---, N}. Note that Pyysrc (0)
is not a true spectrum (it is a measure of the distance between

two subspaces), it gives us peaks corresponding to the exact
DOA of the waves but does not inform us about the power of
the sources.

D. Minimum norm method

Unlike the MUSIC method where the directional vectors are
projected onto the whole (/N x P) dimensional noise subspace,
the minimum norm method [17] projects the directional vec-
tors onto a particular one-dimensional vector v which is a com-
bination of the noise eigenvectors [upy1, Upt2, -+ , UN].
The angular spectrum is expressed in the following form:

1

Pyrin-norm(0) = a2 (19)

Since v lies in the noise subspace, it satisfies the following
relation:

a?(O)v=0 Ek=1{1,2 ---, P}, (20)

where v = [v1, vg, +-- , UN}T. The determination of v is
therefore a minimization problem. The formulation of the
optimization problem is given using the first column of the
identity matrix e; as follows:

min (v Vy)  subject to  eflv =1, @A)
v

where e = [1, 0, --- , O}T. Similar to the MUSIC method,
the angular spectrum of the minimum norm method is ex-
pressed as follows [18]:

1
) vm—nv_ a(6)

m—n

Pyuin-norm(0) = o | (22)

E. Sparse representation

Recall that the objective is to find the directions of the
waves emitted by the point sources. A model was established
in Section II, and we consider an acoustic antenna formed
by N sensors and placed in a medium comprising P point
sources, the signal observed at the output of the sensors is
expressed in a general way:

y()=A0)s(t)+0(1),

The parametric estimation problem indicated by the relation
(23) is transformed into a sparse source representation prob-
lem. For this purpose, we introduce a redundant representation
of A. This one serves as a redundant dictionary in terms of
all possible source positions {601,602, --- 605}, which leads
to a grid, or a spatial sampling, including the maximum of
potential positions of the sources to be localized. This number
of source positions L is generally much larger than the number
of real sources P, and even much larger than the number of
sensors N. The matrix A of size (N x L) is then constructed
in the following form:

A@) = [1(7) 0 (3). - ()]

Note that here the matrix A 5) is formed by the direc-
tional vectors corresponding to all the possible positions of

the potential sources, which is different from the matrix of

t={1,2,---,T}. (23)

(24)
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directional vectors of the relation (23) in the sense that this
matrix contains only the directional vectors of the positions of
the real (or exact) sources. In this representation the transfer
matrix is known and does not depend on the exact position of
the sources which is provided by the set {6,,62,--- ,0p}, as
see in (23). On the other hand, the complex amplitudes of the
signals reaching the antenna at time ¢ can be expressed by a
vector of dimension (L x 1):

x(t) = [1’1 (t)ax2 <t)v L AL (t)}Ta

where the p'" element , (¢) is non-zero and equal to s, (t)
if 2, (t) and s, (t) correspond to the same source direction
while all other elements are zero. We have the representation:

y(t):A(g)x(t)+b(t), t=1{1,2, .-, T}, (26)

where T is the number of time samples. In fact, the observation
vector of the signal y (¢) appearing in (23) or in (26) is
identical. This means that y (¢) expressed using (26) can also
be used by traditional antenna processing methods to locate
sources. However, a form of redundant representation appears
in (26) allowing us to transform the problem of parametric
estimation of the position of the sources into a problem of spa-
tial sparse estimation of these sources. Similar to many non-
parametric source location algorithms, this algorithm seeks to
locate sources by estimating the energy of the signal whose
spectral representation has dominant peaks corresponding to
the true source positions, in the ideal case. We need to obtain
an estimate of the signal z (¢) via the observation vector y (t)
by solving (26) which is an “ill-posed” problem. The key
assumption is that the number of sources is low, which ensures
the sparsity. Under such assumption, the spatial spectrum is
sparse, i.e., the majority of the elements of x (¢) are zero (or
near zero).

We have in fact the problem of minimizing the objective
functional J (x), involving a lo-norm attachment term to the
data and a 1;-norm penalty on the coefficients. The appropriate
object function for the problem takes the following form:

7@ =y~ A @) 20| + Al @)l

In the real-valued case, the formulation (27) corresponds to
a convex quadratic problem that can be solved by various
algorithms. But the data in our models are complex-valued and
these two formulations are no longer a pure quadratic problem.
The problem can however be formulated as a Second Order
Cone Programming (SOCP) which is efficient for optimizing
functions with complex, quadratic convex and linear terms
and allows to approach the optimization more easily [19]. The
general form of an SOCP is expressed as a minimization with
respect to x (t):

(25)

27

T

x such as Axr=0b and z € K, (28)

min c

where K is a quadratic cone, i.e., such that {(z1,z2) € R X
RE=1} with ||2a]|, < 1}. For a SOCP problem, K can be
expressed as: K = {Ri X Q1 X -+- X Qr}, where RfL is the
positive orthogonal cone of dimension L and {Qq,---,Qr}

are the second order cones also called Lorentz cones. Figure
3 illustrates a second order cone in R> space:

Fig. 3: Illustration of the second order cone (Lorentz) in R3.

In this paper, the optimization problem will be solved using
an optimization software programmed in MATLAB under the
name of Self-Dual Minimization (Se-DuMi) [20] developed
by J. Sturm [21].

F. 1;-SVD approach

In the relation (23) in order to find the sparse representation
of the signal with the multiple time samples, a direct way is to
solve separately 1" problems from ¢t = 1 to ¢ = T" and to obtain
a set of T solutions & (t) with ¢t = {1,2, --- ,T}. The main
disadvantage of treating each time sample separately is that
there is no relation between these subproblems for different
time samples. For example, if we change the value of z (1)
by another random value, it does not induce a direct influence
on z (t2). The consequence is that this approach suffers from
sensitivity to the signal-to-noise ratio (SNR).

We thus, consider another approach that synthesizes the
multiple temporal samples before seeking the sparse repre-
sentation of the signal, we enforce the signal’s sparsity only
spatially but not temporally. Specifically, we first perform a
lo-norm on each spatial element of x (¢) that includes the
multiple temporal samples and then perform a 1;-norm on this
new value of z to find the spatially sparse representation. The
main weakness of this approach is its huge computational cost.
The size of this inverse problem increases linearly with the
number of samples 7' and the computational cost increases
“super-linearly” with 7'. When 7" is large, this approach is not
reliable to solve the source location problem. In order to reduce
the computational time, we now present an extremely efficient
approach for problems with a large number of temporal
samples, known as 1;-SVD, which was initiated by Malioutov
and Alan S Willsky [22].

Let Y be the synthesized observation matrix of size (/N xT)
of the temporal data: Y = [y (t1),y (t2), -,y (t7)]. We
define in a similar way X and B and we obtain: ¥ =

A(é)X+B.

-52-



International Symposium on Artificial Intelligence and the Security of New Telecommunications Systems (CIA2ST’2022)

To reduce the computation time and the sensitivity to noise,
we perform a singular value decomposition (SVD) of the
matrix Y and we deduce the reduced observation matrix
Ysv p. The principle of this 1;-SVD approach is to decompose
the matrix Y into signal and noise subspaces by retaining only,
the signal subspace, the problem size is considerably reduced
compared to the approach presented above. Note that unlike
the subspace methods, such as MUSIC and minimum norm,
here it is the signal subspace that is retained and not the noise
subspace.

In the ideal case of the signal without noise, the set of
vectors y (¢;) with ¢ = {1,2,---,T} is in a subspace of
dimension P, where P is the number of sources. We only need
one basis of this subspace to realize the sparse representation
of the signals. Mathematically, we perform a singular value
decomposition (SVD):

Y =WLV'. (29)
We obtain a reduced observation matrix Ysy p of dimension

(N x P), which contains the major power by performing the
following decomposition:

Ysyp = WLDp = YVDp, (30)

where Dp = [Ip O]/. Here, Ip is a unit matrix of dimension
(P x P) and O represents a null matrix of dimension P X
(T — P). In the same way, we have Xgyp = XV Dp and
Bgsyp = BV Dp. We obtain:

Ysyp=A (5) Xsvp + Bsvp. 3D

Considering the relation (31) column by column (each column
corresponds to a singular vector of the signal subspace):

ysvp (p) = A (5) zsvp (p)+bsvp (p), p={1,2, ---,P}.

(32)
Comparing (26) with (32) we can notice that the number of
equations is reduced from 7" to P. Generally, the number of
sources P is much smaller than the number of time samples 7',
so this reduction on the computational cost is very important.

IV. SIMULATIONS

This section focuses on testing the resolution capability
of each algorithm mentioned in section III. We consider a
uniform linear array formed by 20 sensors separated by half
a wavelength of the actual narrowband source signals. Two
zero-mean narrowband signals in the far-field impinge upon
this array from distinct DOA. The simulation is done by taking
N = 3 sources and the total number of temporal samples is
T = 1000.

Spectrum fonction

Spectrum fonction

5
Angle

Fig. 4: Spectra for uncorrelated sources, DOAs: 0°, 5° and
50°. Top: SNR = 10 dB. Bottom: SNR = 0 dB, using the
presented method.

In figure (Fig. 4), we compare the spectrum obtained using
sparse representation method with those of beamforming,
Capon’s method, MUSIC, and minimum norm. In the top plot,
the SNR is 10 dB, we have three sources, two are closely
spaced (5° of separation) and the third source is further away.
The Sparse technique, Capon’s, MUSIC and minimum norm
are able to resolve the nearby sources and the other far-
field, whereas beamforming method merge the sources closely
spaced. In the bottom plot, we decrease the SNR to 0 dB, we
can notice that the sparse technique is still able to resolve the
three sources and even for high resolution methods but not
with the same performance as in the top plot.
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Fig. 5: Spectra for uncorrelated sources, SNR = -2dB, DOAs:
0°, 5° and 50°, using the presented method.

In figure (Fig. 5), we set the SNR to -2 dB, hence Beam-
forming, MVDR, MUSIC and minimum norm can locate
the source 50°, but not able to separate the closely-spaced
sources, contrary to the minimum norm and sparse method
are able to resolve the separation of the three sources. In the
same, we descend the value of SNR to -5 dB and we can
notice, in the figure (Fig .6), that the sparse technique is still
successful in separating the closely spaced sources, while other
localization methods have much difficulty to resolve closely-
spaced sources, especially at low SNRs.
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Fig. 6: Spectra for uncorrelated sources, SNR = -5dB, DOAs:
0°, 5° and 50°, using the presented method.

Continuously, in the figure (Fig. 7), we decrease the SNR to
-10 dB until to -12. This improves the robustness of a sparse
representation in resolving closely-spaced sources despite low
SNR.

 Spectrum fonction

40 |- —A— Beamforming] |
MVDR

—=MUSIC
a5 - —&—MIN-NORM ||
J—V)

0 50 60 70

Spectrum fonction

a0 —&—Beamforming| |
MVDR

—=MUSIC
45 —&—MIN-NORM |
—— 15V

50 I I I I L I
10 [ 10 2 30 a0 50 60 70

Angle

Fig. 7: Spectra for uncorrelated sources, DOAs: 0°, 5° and
50°. Top: SNR = -10 dB. Bottom: SNR = -12 dB, using the
presented method.

As can be seen in Fig.1 to Fig.7, in noisy environments (low
SNR), the sparse representation method performs better than
all the others methods.

V. CONCLUSIONS

In this paper, we have discussed the performance analysis
related to the resolution capability of DOA algorithms for
localizing noise sources closely spaced. The algorithms have
been simulated under different noise level environments. For
each noise level, we have presented the performance of the
resolution of the algo-rithms by searching to separate two
closely spaced sources and one far-field. The results shown
that in noisy environments, the sparse representation algorithm
is the best performing one and requires fewer elements to
separate the close sources. The minimum norm algorithm is
more significant and in the same time is less sensitive to noise.
Otherwise, in favorable environments, MUSIC performs well
(hight SNR).
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Abstract— It has become necessary to adopt a set of agricultural
practices based on advanced agricultural technology in
accordance with the agriculture 4.0 revolution, in order to meet
the challenges facing farmers in their quest to meet the growing
demand for food. In this regard, this work presents a smart
livestock monitoring system architecture that aims to use a set of
advanced agricultural technologies adapted to the condition and
needs of each animal, in order to offer livestock farm managers
and veterinarians a system for monitoring and tracking the
health, production and status of their livestock. We also highlight
the latest advanced technologies and their use for livestock
farming and digital agriculture in general.

Keywords— Smart livestock farming, Livestock monitoring,
Digital agriculture, Smart livestock management.

l. INTRODUCTION

Agriculture digitalization has an important space on the
agenda of governments in their quest to address the challenges
of food and nutrition insecurity, climate change, youth
unemployment and overall economic growth. With the right
policies, innovation and investment, the agriculture could not
only be able to feed a growing population, but also to create
decent jobs for millions of young people [1].

Technology, as we have seen in other sectors, is key to
influencing change and driving development [2]. It brings
countries together, reduces trade barriers and offers a window
of opportunity for young “digital native” entrepreneurs at the
forefront of innovation applied to different economic sectors.
In agriculture, digitalization could be a game-changer by
increasing productivity, profitability and resilience to climate
change [3].

As expected, in recent years, the agricultural technology
sector has evolved like other sectors. With this change,
traditional production systems have transformed into modern,
productive and innovative systems [4]. Thus, we are now
taking about agriculture with water saving, smart agriculture,
high quality, high efficiency and non-polluting agriculture.
Agriculture 4.0 is the most effective and necessary approach to
achieve all these transformations [5].

The techniques of transition to the agriculture 4.0 standards
are numerous, namely, artificial intelligence, data science,
analytics, Blockchains, Big data, 10T (Internet of Things), 3D
printing [6]. This digital transformation affects a set of
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agricultural areas, namely livestock sector, irrigation sector,
cultivation, etc [7].

After this introduction, in the following second section, we
review the state of the art of the latest advanced technologies in
use as part of the agriculture 4.0 in general. In the third section,
we look more closely at a smart livestock monitoring system
architecture that we propose for smart monitoring of livestock
and the advanced technologies and tools in use for precision
livestock monitoring and tracking of the health, status and
production of the livestock. In the fourth section, we focus on
the security issues and challenges that faces livestock
monitoring and tracking systems. Then, we conclude this paper
and propose some prospects for development.

Il.  AGRICULTURAL ADVANCED TECHNOLOGIES

In the following subsection, we present the key important
advanced technologies for the agriculture 4.0 that has a large
effect on the agriculture industry.

A. Big data analytics for the agriculture

Big data analytics reflects the challenges posed by data that
is too large, too loosely structured, and too fast to be managed
by traditional methods. Farms and agricultural activities now
routinely generate data of an unprecedented scale and
complexity. Organizations around the world are placing
increasing importance on extracting relevant insights from
massive amounts of data. Trying to extract meaningful
information efficiently, quickly and easily from these data
sources is a challenge. Thus, analytics has become a vital thing
to realize the full value of big data to improve agricultural
business performance [8]. In the following sub sections, we
highlight some of the best and most used, mostly open source,
big data technologies that work as a big data analytics system
to analyze large amounts of unstructured data to make
decisions:

1) Apache Hadoop

Hadoop, the most commonly used framework, combines
hardware and open-source software. It takes incoming data
streams and distributes them across blocks. It also provides
tools to analyze the data. It’s a framework that enables
distributed processing of large data sets on a cluster of
computers. It 